Information Science Perspectives on Healthcare: AI, IoT, and Personal Health Records as Drivers of Digital Transformation

Authors

https://doi.org/10.48314/isti.vi.40

Abstract

The rapid digitalization of healthcare has heightened interest in Health Information Technology (HIT), with artificial intelligence (AI), the Internet of Things (IoT), and personal health records (PHR) emerging as transformative innovations. This study systematically reviews evidence from systematic reviews and meta-analyses published between 2016 and 2022 to evaluate the benefits of these technologies across clinical, psycho-behavioral, managerial, and socioeconomic domains. Twenty-four eligible studies were analyzed, revealing that AI consistently demonstrates superior diagnostic accuracy in several disease areas, improves treatment prediction, reduces medical errors, and lowers costs. IoT applications enhance real-time patient monitoring, streamline hospital workflow, and improve patient satisfaction, although challenges persist regarding availability, throughput, and data security. PHR adoption supports chronic disease management, strengthens preventive care, improves patient engagement and adherence, and reduces no-show rates, with moderate evidence for lowering healthcare utilization. Overall, the comparative synthesis highlights AI as a driver of clinical advancement, IoT as a facilitator of managerial efficiency, and PHR as a cornerstone of patient-centered care. Together, these technologies offer significant potential to improve healthcare outcomes, operational efficiency, and system sustainability. However, the existing evidence base is limited in scope and generalizability, emphasizing the need for large-scale, real-world studies to validate long-term impacts and guide policy, investment, and innovation in digital health.

Keywords:

Health Information Technology, Artificial Intelligence, Internet of Things, Personal Health Records, Systematic Review

References

  1. [1] Choi, M., Kim, M., Kim, J. A., & Chang, H. (2020). Building consensus on the priority-setting for national policies in health information technology: A delphi survey. Healthcare informatics research, 26(3), 229–237. https://doi.org/10.4258/hir.2020.26.3.229

  2. [2] Rahman, M. D. H., Rahaman, M., Arafat, Y., Rahat, S. K. R. U. I., Hasan, R., Rimon, S. M. T. H., & Dipa, S. A. (2025). Artificial intelligence for chronic kidney disease risk stratification in the USA: Ensemble vs deep learning methods. British journal of nursing studies, 5(2), 20–32. https://doi.org/10.32996/bjns.2025.5.2.3

  3. [3] Akther, A., Tahrim, F., Voumik, L. C., Esquivias, M. A., & Pattak, D. C. (2025). Municipal solid waste dynamics: Economic, environmental, and technological determinants in Europe. Cleaner engineering and technology, 24, 100877. https://doi.org/10.1016/j.clet.2024.100877

  4. [4] Bauer, A. M., Thielke, S. M., Katon, W., Unützer, J., & Areán, P. (2014). Aligning health information technologies with effective service delivery models to improve chronic disease care. Preventive medicine, 66, 167–172. https://doi.org/10.1016/j.ypmed.2014.06.017

  5. [5] Collins, G. S., & Moons, K. G. M. (2019). Reporting of artificial intelligence prediction models. The lancet, 393(10181), 1577–1579. https://doi.org/10.1016/S0140-6736(19)30037-6

  6. [6] Distefano, S., Bruneo, D., Longo, F., Merlino, G., & Puliafito, A. (2017). Hospitalized patient monitoring and early treatment using IoT and cloud. BioNanoScience, 7(2), 382–385. https://doi.org/10.1007/s12668-016-0335-5

  7. [7] Uddin, M. K., Akter, S., Das, P., Anjum, N., Akter, S., Alam, M., … & Pervin, T. (2024). Machine learning-based early detection of kidney disease: A comparative study of prediction models and performance evaluation. https://doi.org/10.37547/ijmsphr/Volume05Issue12-05

  8. [8] Chang, H., Choi, J. Y., Shim, J., Kim, M., & Choi, M. (2023). Benefits of information technology in healthcare: Artificial intelligence, internet of things, and personal health records. Healthcare informatics research, 29(4), 323–333. https://doi.org/10.4258/hir.2023.29.4.323

  9. [9] Rahman, M., Al Amin, M., Hasan, R., Hossain, S. M. T., Rahman, M. H., & Rashed, R. A. M. (2025). A predictive AI framework for cardiovascular disease screening in the us: Integrating EHR data with machine and deep learning models. British journal of nursing studies, 5(2), 40–48. https://doi.org/10.32996/bjns.2025.5.2.5

  10. [10] Rahman, M. H., Dipa, S. A., Hasan, K., & Hasan, M. M. (2025). Health at risk: Respiratory cardiovascular, and neurological impacts of air pollution. Innovations in environmental economics, 1(1), 56–69. https://doi.org/10.48313/iee.v1i1.41

  11. [11] Akhter, A., Al Shiam, S. A., Ridwan, M., Abir, S. I., Shoha, S., Nayeem, M. B., & Bibi, R. (2024). Assessing the impact of private investment in AI and financial globalization on load capacity factor: Evidence from United States. Journal of environmental science and economics, 3(3), 99–127. https://doi.org/10.56556/jescae.v3i3.977

  12. [12] Ahmad, S., Raihan, A., & Ridwan, M. (2024). Pakistan’s trade relations with BRICS countries: Trends, export-import intensity, and comparative advantage. Frontiers of finance, 2(2), 1_23. 10.59429/ff.v2i2.6551%0D

  13. [13] Hossain, M. N., Anjum, N., Alam, M., Rahman, M. H., Taluckder, M. S., Al Bony, M. N. V., …& Jui, A. H. (2024). Performance of machine learning algorithms for lung cancer prediction: a comparative study. International journal of medical science and public health research, 5(11), 41–55. https://doi.org/10.37547/ijmsphr/Volume05Issue11-05

  14. [14] Coughlin, S. S., Prochaska, J. J., Williams, L. B., Besenyi, G. M., Heboyan, V., Goggans, D. S., De Leo, G. (2017). Patient web portals, disease management, and primary prevention. Risk management and healthcare policy, 33–40. https://doi.org/10.2147/RMHP.S130431

  15. [15] Kruse, C. S., Argueta, D. A., Lopez, L., & Nair, A. (2015). Patient and provider attitudes toward the use of patient portals for the management of chronic disease: A systematic review. Journal of medical internet research, 17(2), e40. https://doi.org/10.2196/jmir.3703

  16. [16] Goldzweig, C. L., Orshansky, G., Paige, N. M., Towfigh, A. A., Haggstrom, D. A., Miake-Lye, I., … Shekelle, P. G. (2013). Electronic patient portals: Evidence on health outcomes, satisfaction, efficiency, and attitudes: a systematic review. Annals of internal medicine, 159(10), 677–687. https://doi.org/10.7326/0003-4819-159-10-201311190-00006

  17. [17] Lui, T. K. L., Tsui, V. W. M., & Leung, W. K. (2020). Accuracy of artificial intelligence--assisted detection of upper GI lesions: A systematic review and meta-analysis. Gastrointestinal endoscopy, 92(4), 821–830. https://doi.org/10.1016/j.gie.2020.06.034

  18. [18] Lui, T. K. L., Guo, C. G., & Leung, W. K. (2020). Accuracy of artificial intelligence on histology prediction and detection of colorectal polyps: A systematic review and meta-analysis. Gastrointestinal endoscopy, 92(1), 11–22. https://doi.org/10.1016/j.gie.2020.02.033

  19. [19] Zhao, W. J., Fu, L. R., Huang, Z. M., Zhu, J. Q., & Ma, B. Y. (2019). Effectiveness evaluation of computer-aided diagnosis system for the diagnosis of thyroid nodules on ultrasound: A systematic review and meta-analysis. Medicine, 98(32), e16379. https://doi.org/10.1097/MD.0000000000016379

  20. [20] Arif, M., Hasan, M., Al Shiam, S. A., Ahmed, M. P., Tusher, M. I., Hossan, M. Z., Others. (2024). Predicting customer sentiment in social media interactions: Analyzing amazon help twitter conversations using machine learning. International journal of advanced science computing and engineering, 6(2), 52–56. https://doi.org/10.62527/ijasce.6.2.211

  21. [21] Voumik, L. C., & Ridwan, M. (2023). Impact of FDI, industrialization, and education on the environment in Argentina: ARDL approach. Heliyon, 9(1), e12872. https://doi.org/10.1016/j.heliyon.2023.e12872

  22. [22] Cao, C., Liu, F., Tan, H., Song, D., Shu, W., Li, W., … & Xie, Z. (2018). Deep learning and its applications in biomedicine. Genomics, proteomics & bioinformatics, 16(1), 17–32. https://doi.org/10.1016/j.gpb.2017.07.003

  23. [23] Islam, M. M., Yang, H.-C., Poly, T. N., Jian, W.-S., & Li, Y.C. J. (2020). Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: A systematic review and meta-analysis. Computer methods and programs in biomedicine, 191, 105320. https://doi.org/10.1016/j.cmpb.2020.105320

  24. [24] Ting, D. S. W., Cheung, C. Y.-L., Lim, G., Tan, G. S. W., Quang, N. D., Gan, A., … & others. (2017). Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. Jama, 318(22), 2211–2223. https://doi.org/10.1001/jama.2017.18152

  25. [25] Xu, Y., Hosny, A., Zeleznik, R., Parmar, C., Coroller, T., Franco, I., … & Aerts, H. J. W. L. (2019). Deep learning predicts lung cancer treatment response from serial medical imaging. Clinical cancer research, 25(11), 3266–3275. https://doi.org/10.1158/1078-0432.CCR-18-2495

  26. [26] Waljee, A. K., Higgins, P. D. R., & Singal, A. G. (2014). A primer on predictive models. Clinical and translational gastroenterology, 5(1), e44. https://doi.org/10.1038/ctg.2013.19

  27. [27] Urbee, A. J., Hasan, M. A., Ridwan, M., & Dewan, M. F. (2025). Adaptation and resilience in the face of climate-induced migration: Exploring coping strategies in the urban economy of barishal metropolitan city. Environment, innovation and management, 1, 2550005. https://doi.org/10.1142/S306090112550005X

  28. [28] Tomašev, N., Glorot, X., Rae, J. W., Zielinski, M., Askham, H., Saraiva, A., … & others. (2019). A clinically applicable approach to continuous prediction of future acute kidney injury. Nature, 572(7767), 116–119. https://doi.org/10.1038/s41586-019-1390-1

  29. [29] Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ, 339. https://doi.org/10.1136/bmj.b2700

  30. [30] Rumsfeld, J. S., Joynt, K. E., & Maddox, T. M. (2016). Big data analytics to improve cardiovascular care: promise and challenges. Nature reviews cardiology, 13(6), 350–359. https://doi.org/10.1038/nrcardio.2016.42%0A%0A

  31. [31] Mozumder, M. A. S., Nguyen, T. N., Devi, S., Arif, M., Ahmed, M. P., Ahmed, E., … & Uddin, A. (2024). Enhancing customer satisfaction analysis using advanced machine learning techniques in fintech industry. Journal of computer science and technology studies, 6(3), 35–41. https://doi.org/10.32996/jcsts.2024.6.3.4

  32. [32] Guideline, W. H. O. (2019). Recommendations on digital interventions for health system strengthening. World health organization, 2010–2020. https://www.who.int/publications/i/item/9789241550505

  33. [33] Rahman, M. H., Anwar, M. M., & Hossain, F. (2025). AI-Driven big data and business analytics: advancing healthcare, precision medicine, supply chain resilience, energy innovation and economic competitiveness. Journal of medical and health studies, 6(3), 205–215. https://doi.org/10.32996/jmhs.2025.6.3.30

  34. [34] Ridwan, M., Aspy, N. N., Bala, S., Hossain, M. E., Akther, A., Eleais, M., & Esquivias, M. A. (2024). Determinants of environmental sustainability in the United States: Analyzing the role of financial development and stock market capitalization using LCC framework. Discover sustainability, 5(1), 319. https://doi.org/10.1007/s43621-024-00539-1

  35. [35] Ridwan, M., Akther, A., Dhar, B. K., Roshid, M. M., Mahjabin, T., Bala, S., & Hossain, H. (2025). Advancing circular economy for climate change mitigation and sustainable development in the nordic region. Sustainable development, 1_20. https://doi.org/10.1002/sd.3563

  36. [36] Orthi, S. M., Rahman, M. H., Siddiqa, K. B., Uddin, M., Hossain, S., Al Mamun, A., & Khan, M. N. (2025). Federated learning with privacy-preserving big data analytics for distributed healthcare systems. Journal of computer science and technology studies, 7(8), 269–281. https://doi.org/10.32996/jcsts.2025.7.8.31

  37. [37] Rahman, M. H., Das, A. C., Shak, M. S., Uddin, M. K., Alam, M. I., Anjum, N., … & Alam, M. (2024). Transforming customer retention in fintech industry through predictive analytics and machine learning. The american journal of engineering and technology, 6(10), 150–163. https://doi.org/10.37547/tajet/Volume06Issue10-17

  38. [38] Ridzuan, A. R., Rahman, N. H. A., Singh, K. S. J., Borhan, H., Ridwan, M., Voumik, L. C., & Ali, M. (2023). Assessing the impact of technology advancement and foreign direct investment on energy utilization in malaysia: an empirical exploration with boundary estimation [presentation]. International conference on business and technology (pp. 1–12). https://doi.org/10.1007/978-3-031-55911-2_1

  39. [39] Adler-Milstein, J., Sarma, N., Woskie, L. R., & Jha, A. K. (2014). A comparison of how four countries use health IT to support care for people with chronic conditions. Health affairs, 33(9), 1559–1566. https://doi.org/10.1377/hlthaff.2014.0424

  40. [40] McGinnis, J. M., Stuckhardt, L., Saunders, R., & Smith, M. (2013). Best care at lower cost: the path to continuously learning health care in America. National academies press. https://books.google.com/books?hl=en&lr=&id=_wUw6XCFqGwC&oi=fnd&pg=PR1&dq

  41. [41] Ridwan, M., Al Jubayed, A., Kayser, K. A., Ahmed, M. E., Chowdhury, R. R., Hassan, M. R., … & Kanij, H. N. (2025). Examine the role of political stability and education toward green economy: An empirical evidence for bangladesh. Environment, innovation and management, 1, 2550011. https://doi.org/10.1142/S3060901125500115

  42. [42] Hasan, M. M., Riaz, M. H., Ahmed, Z., Islam, S., Uddin, M. S., Roshid, M. M., … & Atasoy, F. G. (2025). Decarbonizing bangladesh: The roles of technological innovation, energy transition, and Urban-Industrial dynamics in greenhouse gas emissions. Environment, innovation and management, 1, 2550019. https://doi.org/10.1142/S306090112550019X

  43. [43] Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer networks, 54(15), 2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010

  44. [44] Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future healthcare journal, 6(2), 94–98. https://doi.org/10.7861/futurehosp.6-2-94

  45. [45] Accenture, A. (2017). Artificial intelligence: Healthcare’s new nervous system [Thesis].

  46. [46] Rahat, S. K. R. U. I., RAHMAN, M. D. H., Arafat, Y., Rahaman, M., Hasan, M. M., & Al Amin, M. (2025). Advancing diabetic retinopathy detection with AI and deep learning: Opportunities, limitations, and clinical barriers. British journal of nursing studies, 5(2), 1–13. https://doi.org/10.32996/bjns.2025.5.2.1

  47. [47] Ridwan, M., Akther, A., Al Absy, M. S. M., Tahsin, M. S., Bin Ridzuan, A. R., Yagis, O., & Mukhta, K. P. (2024). The role of tourism, technological innovation, and globalization in driving energy demand in major tourist regions. International journal of energy economics and policy, 14(6), 675–689. https://doi.org/10.32479/ijeep.17344

  48. [48] Ridwan, M., Akther, A., Tamim, M. A., Ridzuan, A. R., Esquivias, M. A., & Wibowo, W. (2024). Environmental health in BIMSTEC: the roles of forestry, urbanization, and financial access using LCC theory, DKSE, and quantile regression. Discover sustainability, 5(1), 429. https://doi.org/10.1007/s43621-024-00679-4

  49. [49] Raihan, A., Bala, S., Akther, A., Ridwan, M., Eleais, M., & Chakma, P. (2024). Advancing environmental sustainability in the G-7: The impact of the digital economy, technological innovation, and financial accessibility using panel ARDL approach. Journal of economy and technology. https://doi.org/10.1016/j.ject.2024.06.001

  50. [50] Sweet, M. M. R., Arif, M., Uddin, A., Sharif, K. S., Tusher, M. I., Devi, S. (2024). Credit risk assessment using statistical and machine learning: Basic methodology and risk modeling applications. International journal on computational engineering, 1(3), 62–67. https://doi.org/10.62527/comien.1.3.21

  51. [51] Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7%0A%0A

  52. [52] Devi, R., Powell, J., Singh, S., & others. (2014). A web-based program improves physical activity outcomes in a primary care angina population: randomized controlled trial. Journal of medical internet research, 16(9), e3340. https://doi.org/10.2196/jmir.3340

  53. [53] Elbert, N. J., van Os-Medendorp, H., van Renselaar, W., Ekeland, A. G., Hakkaart-van Roijen, L., Raat, H., Pasmans, S. G. M. A. (2014). Effectiveness and cost-effectiveness of ehealth interventions in somatic diseases: a systematic review of systematic reviews and meta-analyses. Journal of medical internet research, 16(4), e2790. https://doi.org/10.2196/jmir.2790

  54. [54] Rahman, M. H., Hossin, M. E., Hossain, M. J., Uddin, S. M. M., Faruk, M. I., Anwar, M. M., & Hossain, F. (2024). Harnessing big data and predictive analytics for early detection and cost optimization in cancer care. Journal of computer science and technology studies, 6(5), 278–293. https://doi.org/10.32996/

  55. [55] Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business horizons, 58(4), 431–440. https://doi.org/10.1016/j.bushor.2015.03.008

  56. [56] Shak, M. S., Uddin, A., Rahman, M. H., Anjum, N., Al Bony, M. N. V., Alam, M., … & Pervin, T. (2024). Innovative machine learning approaches to foster financial inclusion in microfinance. International interdisciplinary business economics advancement journal, 5(11), 6–20. https://doi.org/10.55640/business/volume05issue11-02

  57. [57] Ancker, J. S., Osorio, S. N., Cheriff, A., Cole, C. L., Silver, M., & Kaushal, R. (2015). Patient activation and use of an electronic patient portal. Informatics for health and social care, 40(3), 254–266. doi/abs/10.3109/17538157.2014.908200

  58. [58] Goel, M. S., Brown, T. L., Williams, A., Cooper, A. J., Hasnain-Wynia, R., & Baker, D. W. (2011). Patient reported barriers to enrolling in a patient portal. Journal of the american medical informatics association, 18(1), 8-12. https://doi.org/10.1136/amiajnl-2011-000473

  59. [59] Reed, M. E., Huang, J., Graetz, I., Lee, C., Muelly, E., Kennedy, C., & Kim, E. (2020). Patient characteristics associated with choosing a telemedicine visit vs office visit with the same primary care clinicians. JAMA network open, 3(6), e205873. https://doi.org/10.1001/jamanetworkopen.2020.5873

  60. [60] Rahman, J., Rahman, H., Islam, N., Tanchangya, T., Ridwan, M., & Ali, M. (2025). Regulatory landscape of blockchain assets: analyzing the drivers of nft and cryptocurrency regulation. BenchCouncil transactions on benchmarks, standards and evaluations, 100214. https://doi.org/10.1016/j.tbench.2025.100214

  61. [61] Islam, M. M., Nasrin, T., Walther, B. A., Wu, C. C., Yang, H. C., & Li, Y.C. (2019). Prediction of sepsis patients using machine learning approach: a meta-analysis. Computer methods and programs in biomedicine, 170, 1–9.

  62. [62] Raihan, A., Voumik, L. C., Ridwan, M., Akter, S., Ridzuan, A. R., Wahjoedi, Ismail, N. A. (2024). Indonesia’s path to sustainability: exploring the intersections of ecological footprint, technology, global trade, financial development and renewable energy. Opportunities and risks in ai for business development: volume 1 (pp. 1–13). Springer. https://doi.org/10.1007/978-3-031-65203-5_1

  63. [63] Fleuren, L. M., Klausch, T. L. T., Zwager, C. L., Schoonmade, L. J., Guo, T., Roggeveen, L. F. (2020). Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy. Intensive care medicine, 46(3), 383–400. https://doi.org/10.1007/s00134-019-05872-y%0A%0A

  64. [64] Raihan, A., Zimon, G., Ridwan, M., Rahman, M. M., & Salehi, M. (2025). Role of mineral resource rents, renewable energy, and energy efficiency toward carbon neutrality in China. Energy nexus, 17, 100394. https://doi.org/10.1016/j.nexus.2025.100394

  65. [65] Raihan, A., Rahman, S. M., Sarker, T., Ridwan, M., Sahoo, M., Dhar, B. K., … & Bari, A. B. M. M. (2025). Tourism-energy-economy-environment nexus toward sustainable and green development in Malaysia. Innovation and green development, 4(4), 100257. https://doi.org/10.1016/j.igd.2025.100257

  66. [66] Smith, J. S., Roitberg, A. E., & Isayev, O. (2018). Transforming computational drug discovery with machine learning and AI. ACS Medicinal Chemistry Letters. https://doi.org/10.1021/acsmedchemlett.8b00437

  67. [67] Chen, Z. H., Lin, L., Wu, C. F., Li, C. F., Xu, R. H., & Sun, Y. (2021). Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine. Cancer communications, 41(11), 1100–1115. https://doi.org/10.1002/cac2.12215

  68. [68] Agali, K., Masrom, M., Abdul Rahim, F., & Yahya, Y. (2024). IoT-based remote monitoring system: A new era for patient engagement. Healthcare technology letters, 11(6), 437–446. https://doi.org/10.1049/htl2.12089

  69. [69] Lee, H. J., Kook, S., Kim, K., Ryu, J., Lee, H., Lee, Y., & Won, D. (2025). Lightweight and efficient authentication and key distribution scheme for cloud-assisted IoT for telemedicine. Sensors, 25(9), 2894. https://doi.org/10.3390/s25092894

  70. [70] Kumar, Y., Yadav, G., Singh, P. K., & Arora, P. (2018). A PHR-based system for monitoring diabetes in mobile environment. In Mobile solutions and their usefulness in everyday life (pp. 129–144). Springer. https://doi.org/10.1007/978-3-319-93491-4_7%0A%0A

  71. [71] Ono, Y., Okada, H., Kitagawa, N., Majima, S., Okamura, T., Senmaru, T., … & Fukui, M. (2024). Impact of personal health records on diabetes management: A propensity score matching study. Diabetology, 5(7), 640–655.

Published

2025-03-27

How to Cite

Rahman, M. H. . (2025). Information Science Perspectives on Healthcare: AI, IoT, and Personal Health Records as Drivers of Digital Transformation. Information Sciences and Technological Innovations, 2(1), 72-87. https://doi.org/10.48314/isti.vi.40

Similar Articles

1-10 of 12

You may also start an advanced similarity search for this article.