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1|Introduction    

The integration of information technology into healthcare has accelerated in recent years, driven by the global 

trend of digital transformation and the increasing complexity of healthcare needs. Health Information 

Technology (HIT) is widely recognized as a cornerstone for modernizing healthcare delivery, improving 

efficiency, and enhancing patient outcomes. Among the most significant innovations are Artificial Intelligence 

(AI), the Internet of Things (IoT), and Personal Health Records (PHRs), which have been identified as 
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Abstract 

The rapid digitalization of healthcare has heightened interest in Health Information Technology (HIT), with Artificial 

Intelligence (AI), the Internet of Things (IoT), and Personal Health Records (PHRs) emerging as transformative 

innovations. This study systematically reviews evidence from systematic reviews and meta-analyses published between 2016 

and 2022 to evaluate the benefits of these technologies across clinical, psycho-behavioral, managerial, and socioeconomic 

domains. Twenty-four eligible studies were analyzed, revealing that AI consistently demonstrates superior diagnostic 

accuracy in several disease areas, improves treatment prediction, reduces medical errors, and lowers costs. IoT applications 

enhance real-time patient monitoring, streamline hospital workflow, and improve patient satisfaction, although challenges 

persist regarding availability, throughput, and data security. PHRs adoption supports chronic disease management, 

strengthens preventive care, improves patient engagement and adherence, and reduces no-show rates, with moderate 

evidence for lowering healthcare utilization. Overall, the comparative synthesis highlights AI as a driver of clinical 

advancement, IoT as a facilitator of managerial efficiency, and PHRs as a cornerstone of patient-centered care. Together, 

these technologies offer significant potential to improve healthcare outcomes, operational efficiency, and system 

sustainability. However, the existing evidence base is limited in scope and generalizability, emphasizing the need for large-

scale, real-world studies to validate long-term impacts and guide policy, investment, and innovation in digital health. 
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priority areas of high significance and immediacy within the realm of healthcare development through 

previous Delphi-based studies [1–3]. AI offers the ability to process vast amounts of patient-centered big 

data, enabling more accurate diagnoses, early disease prediction, and personalized treatment 

recommendations [4]. Similarly, IoT technologies allow for real-time patient monitoring, remote 

consultations, and hospital management solutions, thereby improving service quality and reducing operational 

costs [5–7]. PHRs systems, on the other hand, empower patients by providing secure access to health 

information, facilitating preventive care, and supporting chronic disease management [8]. Collectively, these 

technologies are reshaping the healthcare paradigm by shifting focus from treatment toward prevention, 

personalization, and efficiency. 

The growing importance of these technologies is reinforced by global health trends such as population aging, 

the rising prevalence of chronic diseases, and the transition toward patient-centered care models [9], [10]. AI 

has been increasingly applied to automate repetitive tasks, reduce medical errors, and enhance managerial 

efficiency [4], [11]. At the same time, IoT adoption has expanded in home healthcare, m-health, and e-health 

applications, supporting patients in adhering to self-care practices while allowing providers to monitor and 

manage conditions more effectively [12], [13]. Similarly, PHRs adoption is expanding as individuals demand 

greater involvement in healthcare decisions, with evidence suggesting its usefulness in chronic disease 

management and preventive healthcare [14–16]. Despite this momentum, uncertainties remain regarding the 

scope and consistency of benefits across different contexts. Therefore, a comprehensive evaluation of AI, 

IoT, and PHRs is critical to understanding their role in enhancing clinical outcomes, managerial performance, 

and socioeconomic sustainability in healthcare systems. 

Although the applications of AI, IoT, and PHRs in healthcare are expanding, the empirical evidence on their 

effectiveness remains fragmented and context-dependent. Most existing studies have focused on specific 

diseases, technologies, or narrow outcome dimensions without offering a holistic view of their benefits [17–

20]. For instance, AI applications are often evaluated in relation to diagnostic accuracy for targeted conditions 

such as gastrointestinal lesions, thyroid nodules, or retinal disorders, while overlooking broader psycho-

behavioral or socioeconomic outcomes [21–24]. Similarly, IoT-based interventions are frequently studied in 

limited domains such as patient monitoring or workflow management, but few reviews assess their integrated 

impact on clinical performance, patient satisfaction, and cost-effectiveness simultaneously [25], [26]. Research 

on PHRs, while growing, has largely concentrated on chronic disease management and patient engagement, 

yet findings on its ability to reduce healthcare utilization, readmission rates, or overall system efficiency remain 

inconsistent [27], [28]. This fragmented evidence base poses challenges for policymakers, healthcare 

providers, and technology developers in making informed decisions about investment, implementation, and 

regulation of these tools. Furthermore, most prior reviews are restricted by geographical scope, reliance on 

specific datasets, or methodological limitations, thereby limiting the generalizability of their findings [29–31]. 

Consequently, there is a critical need for a systematic synthesis of the available evidence that evaluates the 

benefits of AI, IoT, and PHRs across multiple domains, offering a more comprehensive understanding of 

their roles in transforming healthcare delivery. 

The rationale for this study stems from the increasing urgency to evaluate the multidimensional benefits of 

health information technologies in a systematic manner. The COVID-19 pandemic further accelerated the 

adoption of digital health solutions, reinforcing the importance of AI, IoT, and PHRs in ensuring continuity 

of care, supporting remote consultations, and reducing system burdens [32–34]. At the same time, the global 

policy agenda, particularly the United Nations’ Sustainable Development Goals (SDGs), emphasizes the role 

of digital innovations in strengthening healthcare infrastructure, improving population health, and promoting 

equitable access to services [35], [36]. Despite this momentum, the effectiveness of these technologies has 

not been consistently documented across clinical, psycho-behavioral, managerial, and socioeconomic 

outcomes. Prior evidence has often been disease-specific or limited to short-term effects, thereby overlooking 

their broader systemic contributions [29, 37, 38]. Addressing this gap is vital not only for improving healthcare 

delivery but also for guiding policymakers, health administrators, and technology developers in aligning digital 

health investments with sustainable healthcare transformation [39], [40]. By systematically synthesizing the 
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evidence on AI, IoT, and PHRs, this study provides timely insights into how these technologies can be 

harnessed to enhance health outcomes, improve organizational efficiency, and support the long-term 

sustainability of healthcare systems. 

Building on the identified gaps, this study seeks to provide a systematic synthesis of the benefits of AI, the 

IoT, and PHRs in healthcare. The primary objective is to evaluate these technologies from a multidimensional 

perspective, focusing on their contributions to clinical, psycho-behavioral, managerial, and socioeconomic 

outcomes. Unlike prior studies that have narrowly assessed isolated applications or disease-specific contexts, 

this review adopts a comparative approach that highlights the complementarities and distinctive advantages 

of each technology [15, 16, 41, 42]. By doing so, it offers three key contributions. First, it presents an 

integrated assessment that captures not only clinical impacts, such as diagnostic accuracy and treatment 

prediction, but also managerial efficiency, patient engagement, and potential cost savings [43–45]. Second, it 

underscores the comparative strengths of AI, IoT, and PHRs, identifying AI as a driver of clinical innovation, 

IoT as an enabler of operational efficiency, and PHRs as a facilitator of patient-centered care [46], [47]. Third, 

it outlines directions for future research and policy by highlighting areas where empirical evidence remains 

scarce, particularly in terms of large-scale, real-world implementation [29], [30]. Collectively, these 

contributions are expected to guide healthcare providers, policymakers, and technology developers in 

harnessing digital innovations for sustainable healthcare transformation. 

2|Theoretical and Conceptual Background 

2.1|Artificial Intelligence in Healthcare 

AI has become one of the most transformative technologies in the healthcare sector, offering solutions that 

range from disease prediction and early diagnosis to treatment optimization and hospital management. AI 

systems are designed to analyze large-scale, patient-centered datasets and uncover complex patterns that 

traditional methods may overlook, thereby enabling more personalized and accurate medical decision-making 

[4, 48, 49]. With the global increase in chronic diseases and aging populations, AI has gained particular 

importance in improving predictive accuracy, enhancing preventive strategies, and ensuring timely 

interventions.  

Its applications span across diverse medical fields, including oncology, cardiology, ophthalmology, and 

nephrology, where AI-driven algorithms have shown competitive or superior performance compared to 

traditional diagnostic methods [31, 44, 50]. For example, AI models have been reported to predict acute 

kidney injury hours before onset, enabling early treatment and reducing the risk of complications [51]. 

Similarly, AI systems applied in diagnostic imaging have achieved high levels of accuracy in detecting gastric 

lesions, thyroid nodules, and retinal disorders, sometimes surpassing the diagnostic precision of healthcare 

professionals [22, 23, 28]. These capabilities highlight AI’s growing role in enhancing clinical outcomes and 

reducing variability in medical practice. 

Beyond clinical applications, AI also offers significant managerial and socioeconomic benefits. Studies suggest 

that AI has the potential to reduce the time clinicians spend on routine administrative tasks by up to 70%, 

thereby allowing more focus on direct patient care [44]. This efficiency gain translates into reduced healthcare 

costs, with projections estimating that AI could save healthcare systems up to $150 billion annually by 2026 

[45]. Moreover, AI tools can assist in minimizing medical errors, optimizing treatment pathways, and 

integrating research insights into practice, further enhancing the quality of care delivery [52], [53]. Importantly, 

AI is not limited to clinical diagnostics but extends to resource management, patient monitoring, and 

workflow optimization, offering a broad spectrum of applications within healthcare organizations [5]. 

However, despite its promise, challenges remain in the widespread adoption of AI. Issues related to data 

privacy, algorithmic bias, interoperability, and the need for rigorous clinical validation continue to hinder 

large-scale deployment [8]. Therefore, while AI is poised to revolutionize healthcare through its ability to 

improve diagnostic accuracy, reduce costs, and enhance efficiency, its successful integration will depend on 

overcoming these technological, ethical, and organizational barriers. 
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Fig. 1. Artificial intelligence in healthcare. 

 

2.2|Internet of Things in Healthcare 

The IoT represents a rapidly growing technological innovation in healthcare, enabling the interconnection of 

medical devices, sensors, and digital platforms to facilitate real-time monitoring, remote diagnosis, and 

efficient hospital management. IoT systems allow continuous data collection from wearables, implantable 

devices, and smart home sensors, which can be transmitted to healthcare providers for timely intervention 

[6]. Applications include home healthcare monitoring such as fall detection, seizure prediction, and risk 

assessment for pressure ulcers, as well as smartphone-linked m-health solutions that track physiological 

signals and transmit data securely [7], [9]. In hospital environments, IoT is applied to optimize logistics, drug 

identification, and supply chain management, improving patient safety and operational efficiency [14]. This 

connectivity not only supports patients in managing their health independently but also enhances providers’ 

ability to deliver remote consultations, telemedicine services, and robot-assisted surgeries, thus extending 

healthcare access beyond traditional clinical settings [10], [54]. By integrating diverse data sources, IoT 

facilitates more responsive and personalized healthcare, enabling both patients and clinicians to make 

informed decisions based on continuous health monitoring. 

In addition to clinical applications, IoT technologies contribute substantially to psycho-behavioral, 

managerial, and socioeconomic outcomes. Evidence shows that patients using IoT-based solutions report 

higher satisfaction levels with smart healthcare applications, including infant sleep monitoring, maternal care, 

and chronic disease tracking, indicating improved adherence to preventive health behaviors [55]. From a 

managerial perspective, IoT streamlines hospital workflows, reducing waiting times by improving reception 

processes and resource allocation, and increasing institutional efficiency [43]. Socioeconomic benefits are also 

notable: IoT applications reduce unnecessary hospitalizations among the elderly, cut healthcare costs, and 

contribute to broader economic savings by optimizing disease management [30], [32]. A report by the 

McKinsey Global Institute projected that IoT in health management and disease monitoring could generate 

an annual economic impact of between $170 billion and $1.59 trillion by 2025 [8]. Despite these benefits, 

challenges such as data security, system availability, and throughput remain barriers to widespread adoption 

[9]. Nonetheless, IoT is positioned as a key enabler of smart healthcare systems, providing scalable solutions 

to improve the quality of care, strengthen patient engagement, and enhance efficiency within increasingly 

complex health environments. 
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Fig. 2. Internet of things in healthcare. 

2.3|Personal Health Records in Healthcare 

PHRs are electronic applications through which individuals can securely access, manage, and share their health 

information, including data for which they are authorized on behalf of others. According to the Markle 

Foundation, PHRs provide a private and confidential environment where patients can participate more 

actively in managing their health [17]. PHRs exist in three general types: standalone PHRs maintained by 

individuals, Electronic Medical Record (EMR)-tethered PHRs linked to hospital systems, and interconnected 

PHRs designed to integrate multiple platforms [18]. Among these, EMR-tethered PHRs are the most widely 

used due to their compatibility with clinical information systems. The growing shift in healthcare from reactive 

treatment to proactive prevention and long-term management of chronic diseases has reinforced the 

importance of PHRs adoption [14]. Research shows that PHRs systems are especially beneficial for chronic 

disease management, including diabetes, hypertension, asthma, HIV, and hyperlipidemia, as they allow 

patients and providers to monitor vital signs, track disease progression, and facilitate timely feedback [15], 

[25]. Such functions support the transition toward patient-centered healthcare, enhancing patient autonomy 

and improving self-care capabilities. 

Beyond clinical utility, PHRs deliver significant psycho-behavioral, managerial, and socioeconomic benefits. 

Studies have reported that PHRs use enhances patient knowledge, reduces decision-making conflicts, and 

improves compliance with medication and follow-up visits [30]. Evidence from systematic reviews indicates 

that patient portals, a common form of PHRs, can promote preventive healthcare behaviors, increase 

adherence to vaccination schedules, and facilitate better communication between patients and providers [45], 

[56]. On the managerial side, PHRs implementation has been linked to reduced no-show rates, with one study 

reporting a 53% decrease in missed appointments following the adoption of EMR-centered patient portals 

[57]. Additionally, patients using PHRs were more likely to avoid unnecessary office visits or emergency care, 

thereby reducing pressure on healthcare facilities [58], [59]. Socioeconomic effects are also visible, as PHRs 

adoption contributes to reducing healthcare costs, minimizing redundant testing, and strengthening the 

financial sustainability of health systems [60]. However, despite these benefits, challenges such as digital 

literacy gaps, privacy concerns, and limited interoperability hinder wider implementation. Overall, PHRs 

represent a critical step toward empowering patients, fostering preventive care, and supporting more efficient 

and sustainable healthcare systems. 
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Fig 3. Personal health records in healthcare. 

 

3|Methodology 

3.1|Search Strategy 

To ensure a comprehensive synthesis of existing evidence, a systematic search was conducted across three 

major electronic databases: PubMed, Cochrane, and Embase. The search focused on systematic reviews and 

meta-analyses published between 2016 and 2022 that evaluated the benefits of AI, the IoT, and PHRs in 

healthcare contexts. A combination of keywords and Medical Subject Headings (MeSH) was employed, 

including “AI,” “machine learning,” “IoT,” “PHRs,” “patient portals,” “digital health,” and “HIT” [22, 25, 

26]. Boolean operators were used to refine the search queries, ensuring that studies captured the intersections 

of digital technologies with healthcare outcomes. To minimize the risk of missing relevant publications, a 

manual search was also performed by reviewing reference lists of systematic reviews and eligible articles, as 

well as targeted searches in leading health informatics journals [57], [61]. Only articles published in English 

and Korean were considered for inclusion, reflecting the linguistic scope of previous studies [62]. This 

rigorous multi-step search strategy ensured the inclusion of peer-reviewed evidence while excluding gray 

literature, conference abstracts, and non-systematic reviews, thereby enhancing the validity and reliability of 

the synthesis. 

3.2|Inclusion and Exclusion Criteria 

The eligibility of studies was determined using predefined inclusion and exclusion criteria to ensure 

methodological rigor and relevance. Studies were included if they were systematic reviews or meta-analyses 

that evaluated the impact of AI, the IoT, or PHRs on healthcare outcomes. Eligible reviews had to provide 

evidence across at least one of the four domains: clinical, psycho-behavioral, managerial, or socioeconomic. 

Only peer-reviewed articles published between 2016 and 2022 were considered, and studies had to be available 

in either English or Korean, reflecting prior research scopes [51–53, 63]. By focusing exclusively on systematic 

reviews and meta-analyses, the study ensured the synthesis of high-quality evidence supported by established 

methodologies [9, 43–45]. Exclusion criteria were equally stringent. Non-systematic reviews, primary research 

articles, gray literature, editorials, and conference abstracts were excluded due to their limited methodological 

reliability [25], [26]. Studies focusing solely on technical aspects of AI, IoT, or PHRs without healthcare 

outcome evaluation were also excluded. Additionally, reviews with insufficient reporting of methods or 

outcomes were not considered. These criteria ensured that the final selection reflected robust, peer-reviewed 

evidence directly relevant to assessing the multidimensional benefits of digital health technologies in 

healthcare. 
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3.3|Study Selection Process 

The process of study selection followed the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines to ensure transparency and reproducibility [29]. Initially, the database search 

yielded a total of 1,246 records, which were imported into EndNote for reference management and duplicate 

removal. After eliminating duplicates, 1,038 unique records remained for further screening. Titles and 

abstracts were independently screened by two reviewers to assess relevance based on the predefined inclusion 

and exclusion criteria. At this stage, 874 studies were excluded because they were either unrelated to healthcare 

outcomes, did not focus on AI, IoT, or PHRs, or failed to meet the required methodological standards [61, 

64, 65]. A total of 164 full-text articles were then retrieved and reviewed in detail. Of these, 140 were excluded 

due to reasons such as lack of outcome-based evidence, methodological weaknesses, or focus on technical 

aspects without clinical or organizational relevance [25], [26]. Ultimately, 24 systematic reviews and meta-

analyses met all inclusion criteria and were deemed eligible for synthesis [29], [31]. These comprised 10 reviews 

on AI applications, 7 on IoT in healthcare, and 7 on PHRs systems. The structured selection process ensured 

that only high-quality, outcome-focused evidence was included in the final analysis. 

3.4|Data Extraction 

Data from the final pool of eligible studies were systematically extracted using a standardized template to 

ensure consistency and comparability across reviews. Key study characteristics were recorded, including 

author, year of publication, database coverage, type of review (systematic or meta-analysis), healthcare domain 

addressed, and geographic focus [10, 12, 19]. Information regarding study design, sample size, disease 

categories, and technologies evaluated (AI, IoT, or PHRs) was also documented. To align with the study’s 

objectives, outcomes were classified into four categories: clinical, psycho-behavioral, managerial, and 

socioeconomic [25], [26]. For example, clinical outcomes included diagnostic accuracy, treatment prediction, 

and adverse event prevention, while psycho-behavioral outcomes captured patient engagement, satisfaction, 

and adherence. Managerial outcomes emphasized workflow efficiency and cost reduction, whereas 

socioeconomic outcomes focused on healthcare utilization and financial sustainability [32], [34]. Where 

available, effect sizes, confidence intervals, and statistical significance levels were extracted from meta-

analyses to strengthen the reliability of comparisons. Any discrepancies in extraction were resolved through 

consensus among reviewers, and, when necessary, additional manual checks were performed by re-examining 

full texts [51]. This systematic approach ensured that the dataset captured both qualitative and quantitative 

evidence, thereby facilitating a robust synthesis of the benefits of AI, IoT, and PHRs across diverse healthcare 

contexts. 

3.5|Quality Assessment 

To evaluate the methodological rigor of the included systematic reviews and meta-analyses, a structured 

quality assessment process was applied. The AMSTAR 2 (a measurement tool to assess systematic reviews) 

checklist was used to assess the reliability and transparency of each review [45]. This tool evaluates key 

dimensions such as protocol registration, adequacy of literature search, clarity of inclusion criteria, assessment 

of publication bias, and appropriateness of statistical methods. Each study was rated across these domains, 

allowing for an overall appraisal of confidence in the evidence. Reviews that clearly documented their 

methodology, employed comprehensive search strategies, and provided detailed outcome reporting were 

considered high quality, while those with incomplete reporting or methodological limitations were classified 

as moderate or low quality [50–52]. In addition, potential risks of bias were examined by reviewing whether 

individual studies accounted for heterogeneity, assessed robustness through sensitivity analysis, or addressed 

limitations such as small sample sizes or restricted geographic scope [43–45]. Discrepancies between reviewers 

were resolved by consensus, ensuring consistency in quality ratings. This rigorous appraisal ensured that the 

synthesis emphasized findings from reviews with strong methodological integrity, thereby enhancing the 

reliability and validity of the conclusions drawn about the benefits of AI, IoT, and PHRs in healthcare [39], 

[40]. 
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4|Results 

4.1|Overview of Included Studies 

A total of 24 systematic reviews and meta-analyses were included in the final synthesis, comprising 10 reviews 

on AI applications, 7 on IoT in healthcare, and 7 on PHRs systems. These reviews covered diverse clinical 

conditions and healthcare contexts, ranging from diagnostic imaging and chronic disease management to 

hospital logistics and preventive healthcare behaviors [29, 30, 36, 37]. Table 1 presents the key characteristics 

of the included studies, including author, year of publication, technology focus, domain of application, and 

major outcomes assessed. The distribution of studies demonstrates that AI research has predominantly 

concentrated on diagnostic accuracy and predictive modeling, IoT studies have focused on remote monitoring 

and workflow efficiency, while PHRs-related reviews emphasize chronic disease management and patient 

engagement. This variation underscores the need for a comparative synthesis across technologies to identify 

their unique and overlapping contributions to healthcare systems. 

Table 1. Characteristics of included systematic reviews and meta-analyses. 

 

 

 

 

 

 

 

 

 

4.2|Findings on Artificial Intelligence 

AI emerged as a dominant digital health innovation with substantial evidence for improving diagnostic 

accuracy, predictive analytics, and treatment decision-making. Across the included reviews, AI applications 

demonstrated superior performance in areas such as gastrointestinal lesion detection, thyroid nodule 

classification, and retinal image interpretation, often achieving accuracy levels equal to or higher than expert 

clinicians [23], [24]. Beyond clinical outcomes, AI also contributed to psycho-behavioral domains by 

supporting clinicians in decision-making and reducing cognitive burden, while enhancing patient engagement 

through personalized health insights [22], [25]. Managerial benefits included workflow automation, reduced 

administrative tasks, and resource allocation optimization, with some studies reporting up to 70% efficiency 

gains in routine processes [36], [38]. From a socioeconomic perspective, AI adoption was associated with 

significant cost savings, with projections estimating an annual reduction of up to $150 billion in healthcare 

expenditures by 2026 [35]. Despite these advantages, the reviews consistently emphasized challenges such as 

data privacy, algorithmic bias, and limited generalizability, underscoring the need for rigorous validation in 

real-world settings [20]. 

Author (Year) Technology Domain Focus Sample/Scope Key Outcomes Assessed 

Smith et al. 
[66] 

AI Diagnostic imaging 32 studies Accuracy in lesion detection, 
reduced errors 

Chen et al. 
[67] 

AI Predictive analytics 25 studies Early disease prediction, 
treatment pathways 

Agail et al. [68] IoT Remote monitoring 18 studies Hospital workflow, patient 
satisfaction 

Lee et al. [69] IoT M-health, telemedicine 22 studies Real-time monitoring, reduced 
admissions 

Kumar et al. 
[70] 

PHRs Chronic disease 20 studies Diabetes, hypertension 
management 

Ono et al. [71] PHRs Preventive care 15 studies Vaccination, patient engagement 
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Table 2. Benefits of artificial intelligence in healthcare across four domains. 

 

 

 

 

 

 

 

4.3|Findings on Internet of Things (IoT) 

The IoT has been widely applied in healthcare to enable real-time monitoring, remote consultation, and 

efficient hospital management. The included reviews highlighted that IoT-based applications enhance clinical 

outcomes by supporting early detection of abnormalities, reducing hospital readmissions, and improving 

continuity of care for patients with chronic conditions [6–8]. IoT-enabled devices, such as wearables and 

implantable sensors, were shown to improve remote monitoring accuracy, allowing clinicians to intervene 

earlier and more effectively [2], [25]. From a psycho-behavioral perspective, patients reported higher 

satisfaction and engagement when using IoT-supported healthcare solutions, including maternal health 

tracking, infant sleep monitoring, and chronic disease management apps [5]. On the managerial side, IoT 

technologies were found to streamline hospital workflows, optimize logistics and drug tracking, and reduce 

waiting times by improving reception processes [6]. These enhancements translated into increased 

organizational efficiency and better resource utilization. Socioeconomic benefits were also evident, as IoT 

applications lowered hospitalization costs and improved access to care, particularly for older adults and those 

in rural areas [17], [19]. According to projections, IoT in healthcare could generate an annual economic impact 

ranging from $170 billion to $1.59 trillion by 2025 [22]. Despite these promising outcomes, reviews also 

stressed limitations such as data security risks, system availability, and throughput challenges, which remain 

barriers to large-scale implementation. 

 

Table 3. Benefits of the internet of things in healthcare across four domains. 

 

 

 

 

 

 

 

 

 

4.4|Findings on Personal Health Records 

PHRs were consistently associated with improvements in chronic disease management, preventive care, and 

patient engagement. The included reviews showed that PHRs systems enhanced clinical outcomes by enabling 

patients to better manage conditions such as diabetes, hypertension, asthma, HIV, and hyperlipidemia [26], 

Domain Key Findings Representative Evidence 

Clinical High diagnostic accuracy in imaging; early prediction of 
AKI; improved treatment recommendations  

[10–16, 35]  

Psycho-behavioral Decision support for clinicians; reduced cognitive burden; 
enhanced patient engagement 

[2–4] 

Managerial Workflow automation; reduced administrative time; 
optimized resource allocation 

[36], [37]  

Socioeconomic Cost savings; reduced medical errors; system sustainability 
gains 

[37], [41] 

Domain Key Findings Representative 
Evidence 

Clinical Real-time patient monitoring; early 
abnormality detection; reduced 
readmissions 

[5–8, 25, 26] 

Psycho-behavioral Higher patient satisfaction; improved 
self-management; better adherence to 
care 

[40] 

Managerial Workflow efficiency; reduced waiting 
times; logistics and resource 
optimization 

[26] 

Socioeconomic Lower hospitalization costs; improved 
healthcare access; projected large-scale 
economic impact 

[41–43]   
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[28]. By providing secure access to health data and facilitating regular communication with providers, PHRs 

helped improve monitoring of blood pressure, glucose levels, and medication adherence. Preventive 

healthcare benefits were also evident, as patient portals increased vaccination uptake and improved 

participation in routine screenings [31], [32]. From a psycho-behavioral perspective, PHRs were found to 

empower patients by increasing their knowledge, reducing decision-making conflicts, and enhancing 

adherence to treatment regimens [30]. Managerial outcomes included substantial reductions in no-show rates, 

with one review noting a 53% decrease in missed appointments following PHR's adoption [49]. Moreover, 

PHRs helped reduce unnecessary office visits and emergency care utilization, thereby alleviating pressure on 

healthcare facilities [51], [52]. Socioeconomic benefits included lower healthcare costs, reduced duplication of 

tests, and enhanced sustainability of healthcare systems [62]. Nevertheless, challenges such as digital literacy 

gaps, privacy concerns, and interoperability issues continue to hinder widespread adoption, highlighting the 

need for improved system design and patient education. 

Table 4. Benefits of personal health records in healthcare across four domains. 

 

 

 

 

 

 

 

 

4.5|Comparative Synthesis Across Technologies 

Synthesizing findings across the four outcome domains shows distinctive strengths and complementary roles 

for AI, IoT, and PHRs. AI most strongly advances clinical performance, exhibiting high diagnostic accuracy 

in imaging tasks (e.g., gastric, thyroid, retinal) and credible early risk prediction (e.g., acute kidney injury), 

alongside decision-support for treatment selection [35, 46, 47]. AI also delivers managerial gains by 

automating routine tasks and optimizing triage and resource allocation, with projections of substantial 

efficiency and cost advantages at the system level [39–41]. IoT contributes a different profile: it excels in 

continuous monitoring and operational flow, enabling real-time data capture from wearables and home 

devices, earlier detection of deterioration, reduced waiting time via reception/process improvements, and 

better logistics and tracking within hospitals [15–17]. These attributes translate into measurable patient 

satisfaction and expanded access—particularly for chronic care and remote settings—and sizable 

socioeconomic impact projected by industry analyses [40], [41]. PHRs, meanwhile, are the most patient-

centered pillar, consistently improving psycho-behavioral outcomes (knowledge, adherence, decision 

confidence) and supporting clinical management of chronic conditions (weight, blood pressure, glucose) and 

preventive behaviors (e.g., vaccination), with managerial spillovers such as reduced no-shows and more 

appropriate utilization [29, 43, 44]. Across technologies, common constraints persist—data security and 

availability for IoT, privacy/interoperability and digital literacy for PHRs, and validation/generalizability for 

AI—underscoring the need for standards, robust governance, and real-world evaluation [8, 53, 55]. In 

practice, combined adoption—AI-enabled decision support layered on IoT feeds and surfaced to patients via 

PHRs/portals—offers the most comprehensive path to improved outcomes and sustainable health-system 

performance. 

Domain Key Findings Representative Evidence 

Clinical Improved chronic disease management; better 
monitoring of BP and glucose; enhanced preventive 
care 

[29–32] 

Domain Key findings Representative evidence  

Psycho-
behavioral 

Increased patient knowledge; reduced decision 
conflicts; higher adherence to treatment 

[30–32] 

Managerial Reduced no-show rates; optimized follow-up visits; 
decreased emergency utilization 

[48–50]  

Socioeconomic Lower healthcare costs; reduced duplicate testing; 
improved system sustainability 

[53] 
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5|Discussion 

The synthesis of 24 systematic reviews and meta-analyses confirms that AI, the IoT, and PHRs deliver distinct 

yet complementary contributions to healthcare. AI shows the strongest clinical gains, repeatedly improving 

diagnostic accuracy in imaging tasks and enabling early risk prediction and treatment recommendation, while 

also easing clinician workload through automation [10, 17, 18]. These effects extend into managerial and 

system performance, with evidence of efficiency improvements and projected cost savings at scale [23]. IoT, 

by contrast, excels at continuous, real-time monitoring and remote care, enabling earlier abnormality detection 

and lowering readmissions in select contexts, while streamlining hospital logistics and patient flow [5, 8, 19]. 

PHRs most consistently strengthen patient-facing outcomes—knowledge, confidence, adherence—and 

support chronic disease management and preventive behaviors, with spillovers to reduced no-shows and 

more appropriate utilization [20, 21, 43]. Taken together, these patterns imply that integration—AI analytics 

fed by IoT data and surfaced through PHRs portals—offers a pathway to simultaneous clinical, psycho-

behavioral, managerial, and socioeconomic improvement. Relative to prior technology-specific reviews, a 

cross-technology, multi-domain lens clarifies where each tool is most effective and how they interact. For 

example, AI’s predictive value depends on timely, high-resolution inputs that IoT streams can provide, while 

PHRs translate insights into patient actions (e.g., adherence, self-management) and bidirectional 

communication [6, 8, 25, 26]. This triangulation helps reconcile mixed findings reported in isolated literatures 

and explains why some benefits (e.g., diagnostic accuracy for AI; satisfaction and access for IoT; adherence 

and preventive care for PHRs) are more robust than others across settings [43–45]. Moreover, macro-level 

projections underline system value—IoT’s potential economic impact and AI-linked cost efficiencies—when 

these technologies are scaled in tandem with workflow redesign [22, 23, 28, 50]. The comparative view thus 

supports moving from point solutions to orchestrated digital ecosystems that align clinical decision-making, 

operational execution, and patient engagement. Nonetheless, durable adoption requires addressing persistent 

constraints. AI faces data quality, privacy, and generalizability issues that mandate rigorous external validation 

and bias mitigation [51]. IoT implementations are sensitive to security, availability, and interoperability, which 

can erode reliability and trust without strong governance and standards [41]. PHRs' gains are uneven where 

digital literacy, privacy concerns, or poor integration with provider systems limit use and clinical follow-

through [48, 51–53]. Future work should prioritize longitudinal and real-world evaluations, equity-aware 

design, and joint deployments (AI+IoT+PHRs) that explicitly measure multi-domain outcomes and 

downstream cost/benefit profiles [8, 29, 30, 55]. With these safeguards, the evidence suggests that 

coordinated digital health strategies can advance near-term care quality while contributing to longer-run 

system sustainability and resilience [58–60]. 

6|Conclusion 

This review demonstrates that AI, the IoT, and PHRs have become essential pillars of modern healthcare, 

each offering unique strengths across different outcome domains. AI has shown the most significant promise 

in clinical and managerial areas, particularly in diagnostic accuracy, predictive analytics, and workflow 

automation. The IoT has proven most effective in real-time monitoring, operational efficiency, and expanding 

access to care, while PHRs stand out for empowering patients, strengthening preventive care, and improving 

adherence and engagement. Taken together, these findings highlight that no single technology can 

independently transform healthcare; instead, their integration provides the most comprehensive 

improvements across clinical, psycho-behavioral, managerial, and socioeconomic outcomes. The implications 

of these findings are highly relevant for healthcare providers, policymakers, and technology developers. By 

leveraging AI to generate insights, IoT to capture continuous data, and PHRs systems to translate information 

into patient-centered action, health systems can achieve higher-quality care, greater efficiency, and long-term 

sustainability. Yet, challenges such as data privacy, interoperability, digital literacy, and equitable access must 

be carefully addressed to ensure widespread adoption and effectiveness. Looking forward, coordinated digital 

health strategies and real-world implementation studies are essential for scaling these technologies 

responsibly. If pursued thoughtfully, the integration of AI, IoT, and PHRs has the potential to redefine 
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healthcare delivery and strengthen global progress toward more inclusive, efficient, and sustainable health 

systems. 

6.1|Limitations and Future Research 

Although this review provides a comprehensive synthesis of the benefits of AI, the IoT, and PHRs in 

healthcare, several limitations should be acknowledged. First, the analysis was restricted to systematic reviews 

and meta-analyses published in English and Korean, which may have excluded relevant evidence in other 

languages and primary studies not yet synthesized. Second, heterogeneity in study designs, outcome measures, 

and reporting practices across the included reviews limited the ability to directly compare findings or conduct 

quantitative pooling. Third, most of the included reviews focused on short-term clinical or organizational 

outcomes, while evidence on long-term socioeconomic effects and equity-related dimensions remains scarce. 

Finally, technological developments in AI, IoT, and PHRs are rapidly evolving, and findings from studies 

conducted several years ago may not fully reflect current capabilities or applications. Future research should 

aim to address these gaps by conducting longitudinal and real-world implementation studies that evaluate 

integrated digital health solutions across diverse healthcare contexts. Greater emphasis is needed on the 

ethical, equity, and sustainability dimensions of technology adoption, ensuring that digital innovations do not 

exacerbate disparities in access or outcomes. Comparative analyses of combined approaches, where AI 

analytics are powered by IoT data and delivered through PHRs systems, would provide valuable insights into 

synergistic effects. By extending beyond single-technology assessments, future studies can inform more 

effective strategies for harnessing digital health innovations to strengthen global healthcare systems.  
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