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Abstract

Pneumonia continues to be a significant reason for sickness and death worldwide in places with limited resources
and among older people. Spotting it is key to stepping in and getting better results for patients. However, the usual
ways to diagnose it often take too long and aren't easy to access. This study proposes and validates a novel edge cloud
integrated framework that leverages multimodal wearable sensors and deep learning for the pre-symptomatic
detection of pneumonia. The system continuously acquites and analyzes high-frequency physiological data
(Respiratory Rate (RR), Heart Rate (HR), SpO,, body temperature) and event-driven acoustic biomarkers (cough
sounds) through a distributed architecture. An intelligent edge module performs local preprocessing and anomaly
triage, selectively transmitting only flagged anomalous data to a cloud-based multimodal deep learning model, which
then performs sophisticated risk stratification. We trained and validated our framework on a composite dataset
including public repositories (MIMIC-III, Coswara) and a clinically supervised deployment in two Nigerian hospitals,
totaling over 12,000 patient hours. The model achieved an area under the curve of 0.947, with a sensitivity of 94.3%
and a specificity of 90.1%, demonstrating its potential as a scalable, interpretable, and privacy-preserving system for
proactive respiratory health monitoring.
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1| Introduction

Pneumonia is a lung infection caused by viruses and bacteria. It generally causes inflammation of the alveoli
ot the air sacs of the lungs, which usually results in breathing problems, consistent coughing, and chest pain
that presents itself with vague, ambiguous, and imprecise symptoms. Pneumonia is responsible for over
800,000 hospitalizations per year in Nigeria [1]. Pneumonia usually starts as an acute infection, which, if not

Corresponding Author: oluwagbemijb@mcu.edu.ng
d. https://doi.org/10.48314/isti.vi.39

Licensee System Analytics. This article is an open access article distributed under the terms and conditions of the Creative
@® Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0).


mailto:dastam66@gmail.com
mailto:oluwagbemijb@mcu.edu.ng
https://doi.org/10.48314/isti.vi.39
http://www.isti.reapress.com/
mailto:eoibam@futa.edu.ng
mailto:oluwagbemijb@mcu.edu.ng
mailto:oladapoka@mcu.edu.ng
https://orcid.org/0009-0006-6882-9562

89 Ibam et al. | Inf. Sci. Technol. 2(2) (2025) 88-101

diagnosed and treated on time, can become chronic pneumonia. If diagnosed eatly, pneumonia can be treated,
whereas severe cases of pneumonia usually result in mortality, especially among children less than five years

old.

Pneumonia is an acute infection of the lungs, posing a significant global health problem. It is the single major
infectious cause of death in children worldwide and a significant cause of hospitalization and mortality among
the elderly [2]. The clinical challenge of pneumonia is its insidious onset, where early symptoms, such as

fatigue and mild cough, can be easily misinterpreted for less severe respiratory ailments.

Previous research in Artificial Intelligence (Al) driven pneumonia detection has primarily focused on
analyzing static medical images, such as CXRs or CT scans [3]. While powerful, these approaches are confined
to clinical settings. Other studies have explored unimodal analysis of wearable data, such as classifying cough
sounds. Or detecting fever [4], [5]. These single modality systems are susceptible to high false positive rates
and lack the contextual richness to distinguish between pneumonia and other conditions like bronchitis or
the common cold. There is a critical gap in the synthesis of multiple, continuous biosignals into a cohesive,
longitudinal health record for robust, eatly-stage disease detection in a real-world, ambulatory setting,.

This paper addresses this gap by presenting a comprehensive, edge-cloud-enabled framework for eatly

pneumonia detection. Our approach makes the following key contributions:

I. A multimodal sensing fusion framework: we integrate continuous physiological time series data with event-

driven acoustic biomarkers to create a holistic view of a patient's respiratory health.

II. A hybrid-edge cloud architecture: we design a distributed system that leverages edge computing for real-time
preprocessing, low-latency alerts, and data efficiency, while utilizing the cloud for complex deep learning

inference and model training.

III. A robust deep learning model: we develop a hybrid neural network that combines Convolutional Neural
Networks for spatial feature extraction from audio spectrograms and Long Short Term Memory networks
for capturing temporal dependencies in physiological signals.

IV. Rigorous evaluation and interpretability: we validate the framework using a large-scale, composite dataset

and incorporate explainable Al techniques to provide clinical transparency.
2| Literature Review

Vidhya et al. [6] developed a software tool for diagnosing pneumonia using Al and lung sound analysis to
minimize diagnosis time and reduce dependency on imaging techniques. Lung sounds recorded through a
digital stethoscope, Noise reduction and filtering with Audacity software, feature extraction using Librosa
(MFCC features), classification with SVM, KNN, and Gradient. In their findings, their proposed Al tool
using Gradient Boosting was accurate, fast, non-invasive, and economical for diagnosing pneumonia.
However, its performance is limited in a noisy environment.

Xu and Wang [7] developed a robust and flexible multimodal deep learning framework that integrates image
and textual data to enhance pneumonia detection, even when one modality is wholly or partially missing. The
concept used was Multimodal learning, Masked attention, Stacking Mixture of Experts (MOE), Transfer
learning with BERT, and ResNet 50 Multitask learning. They developed the Flexible Multimodal Transformer
(FMT), Combined BERT (for text) and ResNet-50 (for X-ray images). Used dynamic masked attention to
simulate real-world data loss. They applied a stacked MOE architecture for refined prediction, trained and
tested on a private small multimodal pneumonia dataset (43 samples). Also, they conducted ablation studies
comparing FMT against ResNet, BERT, and CheXMed. The FMT model effectively handles multimodal
diagnostic challenges such as data scarcity and missing modalities. It improves pneumonia detection
performance with fewer parameters and better robustness compared to existing benchmarks, offering clinical
applicability and scalability. However, a small dataset was used, and simulated modality loss may not fully
represent clinical complexity.
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Rancea et al. [8] present edge computing in healthcare: innovations, opportunities, and challenges. They
systematically reviewed and analyzed recent research on edge computing in healthcare, focusing on privacy
and security, Al optimization methods, and edge offloading strategies. In their findings, they discovered that
Edge computing holds robust potential to reform healthcare by addressing latency, scalability, and privacy
challenges. It enables intelligent and adapted care, enhances patient monitoring, and optimizes healthcare

resource use. However, limitations exist in interoperability, standardization, and resource management.

In Rashid et al [9], an enhanced deep learning framework for pneumonia detection in chest X-rays, they aim
to develop an enhanced deep learning model for pneumonia detection that integrates densenet-121 with the
Convolutional Block Attention Module (CBAM) to improve diagnostic accuracy and interpretability in chest
X-ray images. They used the Kermany chest X-ray dataset (5,856 images), integrated CBAM with DenseNet-
121 using additive fusion, applied three-phase training with selective freezing of 40 layers, which used Mish
activation, data augmentation, and transfer learning. The enhanced DenseNet-121 + CBAM framework
significantly improves pneumonia detection from chest X-rays. It offers better feature focus through
attention, high accuracy, and better interpretability. However, no external validation dataset was used, and the

generalizability to other imaging modalities was not assessed.

Mbata et al. [10] in development of ai-assisted wearable devices for early detection of respiratory diseases,
they aim to design and evaluate Al-assisted wearable devices for real time detection of respiratory diseases,
enable continuous, non-invasive monitoring of key physiological markers like oxygen saturation, Respiratory
Rate (RR), and Heart Rate (HR) and to assess their utility in managing conditions such as asthma, COPD,
and pneumonia. The method used was prototyping wearable devices (wristbands, chest straps, patches), and
they deployed AI models (CNN/RNN) for pattern recognition and prediction. In their findings, high sensors
accurately detect early signs of respiratory distress, Al algorithms achieved strong performance in predicting
exacerbations, real-time feedback enabled proactive management and timely interventions, and participants
demonstrated improved awareness and engagement in health self-monitoring. Their Al-assisted wearables
represent a breakthrough in respiratory care by offering scalable, cost-effective, and continuous monitoring
solutions. However, Sensor performance is affected by environmental and physical factors, and it has limited
battery life and a need for frequent recharging.

Sathupadi et al. [11] present edge-cloud synergy for Al-enhanced sensor network data: a real-time predictive
maintenance framework. They developed a hybrid Al framework that combines edge-based anomaly
detection with cloud-based failure prediction. They designed and implemented a two-tier system: lightweight
KNN on Raspberry Pi Zero 2 W (edge) and LSTM on AWS Lambda (cloud), dataset preprocessing, anomaly
detection, and failure prediction using statistical and DL models, evaluated on 20 industrial sensors deployed
across machines (rollers, conveyors), and used real data and compared with a cloud-only method. In their
findings, the hybrid model outperformed fog and static load-balancing methods. However, incorporating
detection of additional failure modes and other environments like healthcare or smart grids will go a long

way.

Al Waisy et al. [12] in COVID-DeepNet: hybrid multimodal deep learning system for improving COVID-19
pneumonia detection in chest X-ray images, developed a hybrid deep learning system (COVID-DeepNet)
combining two robust architectures, DBN and CDBN, to enhance COVID-19 pneumonia detection in chest
X-ray (CX-R) images. They created a large dataset called COVID19-vs-Normal using public X-ray image
repositories (Cohen’s GitHub, RSNA, Radiopaedia), preprocessing with CLAHE (for contrast enhancement)
and a Butterworth filter (for denoising). Training DBN and CDBN from scratch using augmented images
(24,000 samples) and fused output using Weighted Sum Rule (WSR), and compared with other fusion
strategies. COVID-DeepNet was an accurate, interpretable, and practical tool for diagnosing COVID-19
pneumonia from CX-R images. It combines the strengths of both DBN and CDBN, ensuring high confidence
for medical practitioners and minimal false classifications. However, they focused only on binary classification
(COVID-19 vs Normal); validation on multi-class pneumonia datasets is needed.
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Rajaraman et al. [13] emphasize the need for interpretability in CNN-based medical diagnosis due to the
“black box” nature of these models. Their study integrates interpretability methods like Grad-CAM and LIME
into CNN predictions, making the model’s decision process more transparent. The research compares an
optimized custom CNN and a pre-trained VGG16 to distinguish between typical, bacterial, and viral
pneumonia cases. The pre-trained ResNet-50 model performs best, achieving 96.2% accuracy and an
interpretability score of 91.8% (measured by MCC), while the custom CNN reaches 94.1% accuracy and
87.3% interpretability. This advancement in CNN interpretability holds.

The integration of adversarial training and explainability techniques was investigated to enhance the
performance and interpretability of CNN models. According to the findings, the architecture is based on
ResNet-50 and uses methods such as Layer Relationship Propagation (LRP) and mechanisms. The findings
showed that adversarial training significantly improved the robustness of the model and achieved accuracies
between 82.8% (lowest) and 92.4% (highest) under different experimental conditions. The interpretability of
the model was also evaluated, with results indicating a range of 79.6% to 87.3% in interpretability. These
results indicate that adversarial techniques, when combined with interpretability methods such as LRP and
attention to detail, not only provide an accurate model but also provide transparency in the model decision-

making process.

However, previous works such as Rashid et al. [9] and Vidhya et al. [6] have demonstrated the potential of
unimodal audio analysis and static lung sound classification for pneumonia detection; these approaches suffer
from high false positives, environmental sensitivity, and lack of real-time, contextual integration. Our
framework addresses these limitations by blending continuous physiological time series with acoustic
biomarkers within a hybrid edge-cloud architecture delivering both accuracy and deployability in ambulatory
settings.

3| Methodology

This section describes a hybrid cloud-edge computing framework designed for intelligent, real-time health

monitoring. The architecture is composed of four primary modules, each with a distinct role.
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Fig. 1. System architecture of the edge-cloud-enabled multimodal framework
for real-time pneumonia detection using wearable sensors.
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3.1| Data Collection: The Wearable Sensor Ecosystem

This is the starting point of the entire system. A user wears one or more sensors (represented by the smart

watch) that continuously collect a variety of physiological and behavioral data. This data includes:

L

II.

111

IV.

V.

VL

Respiratory Rate: number of breaths per minute

Heart Rate: number of heartbeats per minute.

SpO;: blood oxygen saturation level.

Body temperature: the uset's core or skin temperature.

Cough acoustic signals: audio recordings and analysis of coughs, which can be a key symptom.

Physical activity or sleep patterns: data on movement, exercise, and rest cycles.

This raw data is then sent along two parallel paths for processing.

3.2| The Dual Processing Approach: Edge and Cloud

The system splits the processing tasks to get the best of both worlds: the speed of local processing and the
power of cloud computing,.

I

II.

The cloud path: Al-powered classification

The raw sensor data is sent to the cloud. Then, a Powered Classification Model (deep learning model)
analyzes the comprehensive dataset. This model is trained to recognize complex patterns that may indicate
a specific health risk or condition. Because it runs on powerful cloud servers, it can perform
computationally intensive tasks that would be too slow or power hungty for a local device. The output of
this model is a sophisticated classification (risk assessment), which is then sent to the final stage.

The edge path: immediate local processing

The raw data is also sent to an Edge Processing Module. Edge means the processing happens locally, on
or near the uset's device (smartphone, a dedicated hub, or wearable device). The module does two main
tasks: 1. Signal Processing cleans up the raw sensor data, sifting out noise and making it suitable for analysis
and ii. Anomaly detection runs simpler, quicker algorithms to look for immediate anomalies or deviations
from the uset's normal baseline (a sudden, sharp drop in SpO; or a spike in HR at rest). This provides a
rapid, first-pass analysis, and results are then passed to the user's local monitoring interface and also sent
to the final pipeline.

3.3 | Synthesis: The Real-Time Monitoring Pipeline

This is the central hub where information from both the cloud and the edge converges. It receives the deep,

analytical insights from the Al-powered classification model (75% probability of a respiratory infection). Also,

it receives the immediate findings from the edge processing module (anomaly detected: high RR for the last

10 minutes). By combining these inputs, the system generates a holistic and reliable output, which includes:

I. Risk Probability calculated score representing the uset's risk level.

1I.

II1.

Severity Category classifying the condition's severity (mild, moderate, severe).

Alerts generate notifications for the user, a caregiver, or a medical professional if a risk threshold is crossed.

3.4| Feedback Loop

A crucial feature of this system is the feedback loop shown by the arrow going from the Real-Time Monitoring

Pipeline back to the first Edge Processing Module. This indicates an adaptive system. Finally, risk assessments

can be used to recalibrate the local anomaly detection algorithms. If the cloud Al determines the user is at
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high risk for a specific condition, the edge module can be updated to be more sensitive to the early warning
signs of that particular condition, making the system smarter and more personalized over time.

3.5| Mathematical Model for Multimodal Fusion

Let xy € Rny represent the vitals, xc € Rec the cough audio features, and xg € R?g the static demographic data.
Each of these is passed through a modality-specific encoder ¢m(*) to produce embeddings. The encoded

representations are fused through concatenation to increase a unified embedding:

Z= f(Xv'Xc 'Xs) = ®V(XV)II®C(XC)II®S(XS)‘ (1)

The fused vector z is passed through a fully connected layer and a sigmoid activation to predict the output:

¥y = o(Wz + b). 2)

The model is enhanced using the binary cross-entropy loss:
L=-1/NXi=1" [yilog(¥1) + (1 - yi) log(1 - §)]. Q)

4| AI-Powered Classification Model

This module serves as the powerful, centralized brain of the system. It performs complex, computationally
intensive analysis on the data, consists of a cloud-based infrastructure hosting a sophisticated Al model, and
its role is to identify subtle, long-term patterns and make high-level predictions or classifications that are too
complex for the edge module. More so, it provides deep, diagnostic-level insights.

4.1| Data Representation and Preprocessing

Physiological time series: RR, HR, SpO,, and temperature are sampled and structured into fixed-length
sequences (60-minute windows with 1-minute resolution), representing a temporal snapshot of the patient's
state.

Acoustic features: each segmented cough sound is converted into a log-mel spectrogram, a 2D representation
of the sound's frequency content over time, which is highly effective for audio classification tasks.

Static features: demographic data (age, sex) and clinical history (smoking status, comorbidities like COPD or
asthma) are one-hot encoded.

4.2 | Multimodal Deep Learning Architecture

Our hybrid model is designed to process each data modality with a specialized sub-network before fusing
the learned features for a final prediction.

Acoustic Sub-network (CNN): a 2D CNN, based on a lightweight MobileNetV2 architecture, processes the
cough spectrograms. The convolutional layers excel at learning hierarchical spatial patterns indicative of wet
or dry coughs.

Physiological Sub-network (LSTM): a Bidirectional Long Short-Term Memory (Bi-LSTM) network processes
the time series data. Its recurrent nature allows it to capture long-range temporal dependencies and trends,

such as a gradual increase in resting HR over several hours.

Feature fusion and classification: the feature vector from the final pooling layer of the CNN is concatenated
with the final hidden state of the Bi-LSTM and the static feature vector. The combined vector is then passed
through two fully connected layers with dropout regularization (p = 0.5) to ease overfitting. The final output
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layer uses a softmax function to produce a probability distribution over three classes: no risk, moderate risk,
and high risk (pneumonia suspected).

4.3 | Training and Evaluation Protocol

We constructed a composite dataset from three sources: 1) MIMIC-1II Waveform Database Sanches et al.
[14] for validated physiological data from ICU patients with and without pneumonia, 2) Coswara dataset
Sharma et al. [4] for an extensive public collection of cough sounds, and 3) our study dataset, described below:
The protocol for our study was formally approved by the Institutional Review Board (IRB) of the Federal
University of Technology, Akure, Health Centre (IRB Approval FUTA/HEALTH/2024/012). The study
was conducted between October 2024 and June 2025 at the outpatient respiratory clinics of the Federal
University of Technology, Akure, Health Centre, Ondo State, and the McPherson Health Centre, Seriki-
Sotayo, Ogun State. All participants provided written informed consent before enrollment, in line with the
Declaration of Helsinki. The consent form cleatly specified that anonymized data would be used for research

analysis and publication of aggregated results.

Each volunteer was fitted with a wearable sensor system (a chest strap prototype incorporating a MAX30102
sensor for HR/SpO,, a thermistor, and a MEMS microphone) for a continuous 24-hour monitoring petiod.
Physiological data were sampled at 1-minute intervals. An event-triggered mechanism, based on a real-time
sound amplitude threshold, captured 3-second audio clips of potential cough events to conserve power and
storage.

The study yielded data from 52 unique volunteers (29 male, 23 female) with a mean age of 58.2 years (range:
21-79). In total, this produced over 1,000 hours of physiological time series data and 4,374 captured acoustic
events. Following a quality control process to remove noise and motion artifacts, 1,912 high-quality cough
recordings were retained for model training.

For this dataset, ground truth labels were adjudicated by attending clinicians. The 'High-Risk' group (n=16)
consisted of participants who were subsequently diagnosed with pneumonia, confirmed with both clinical
examination and radiographic evidence. The remaining participants (n=30), presenting with minor non-
pneumonic respiratory issues or no symptoms, formed the 'No/Moderate Risk' group. All data was fully
anonymized at the point of collection. This curated and labeled dataset forms the basis of the de-identified
feature vectors made available for verification, as detailed in Section 10.

We enhance the utility of the dataset collected from volunteers by implementing preprocessing pipelines to
filter noise and outliers in physiological signals and cough audio. Cough signals were augmented through
time-domain and spectral transformations, while time-series vitals underwent statistical feature extraction and
smoothing. Label reliability was improved by stratifying based on clinical confirmation levels. To address
dataset size limitations, transfer learning and data augmentation techniques were employed.

The model's performance was appraised using 5-fold cross-validation. We report accuracy, sensitivity (Recall),
specificity, F1-Score, and the area under the receiver operating characteristic curve (AUC). Sensitivity was
prioritized to curtail the risk of missing a true pneumonia case.

5| Experimentation

This section details the practical implementation and execution of the Al-powered classification models
benchmarked in our study. We outline the technical environment, data preprocessing steps, and the specific
architecture and training routines for each model, culminating in the results presented in Table 1.

5.1| Experimental Setup

All our experiments were conducted on a cloud-based virtual machine equipped with an NVIDIA Tesla T4
GPU and 16 GB of RAM. The software stack was built on Python 3.9 and used several key libraries:

Deep learning: TensorFlow 2.10 with the Keras API for building and training the neural networks
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Machine learning: scikit-learn 1.2 for the baseline models (Logistic Regression, SVM) and for performance
metric calculations.

Data manipulation: pandas and numpy for data loading, structuring, and numerical operations.

Audio processing: librosa for extracting log-mel spectrograms from cough audio files.
5.2 | Data Preprocessing and Feature Engineering

Before model training, the composite dataset underwent rigorous preprocessing aligned with the multimodal
inputs:

Physiological time series (Vitals): raw RR, HR, SpO,, and temperature data were segmented into 60-minute
windows with a 1-minute resolution, creating input tensors of shape (60, 4). For the SVM baseline, statistical
features were computed over each window, reducing it to a flat feature vector. All time-series data was
standardized using Scikit-learn's StandardScaler.

Acoustic data (Cough): each cough audio clip was loaded and resampled to 16kHz. We then generated a log-
mel spectrogram using Librosa with parameters set to an FFT window of 1024, a hop length of 256, and 128
mel bands. This produced a 128xN 2D image, which was padded or truncated to a fixed size of 128x128 to
serve as input for the CNN models.

Static data: demographic and clinical history features were one-hot encoded using pandas.get_dummies.

The entire dataset was split using a 5-fold stratified cross-validation approach (StratifiedKFold) to ensure that
the distribution of risk classes was maintained across all training and validation sets, preventing biased
evaluation. The comprehensive Python scripts for these preprocessing pipelines ate accessible in the project's
GitHub repository (Section 10), consenting for full reproducibility of the feature extraction process.

5.3| Model Implementation and Training

We implemented and trained the four models from Tabk 1 as follows. All models were trained to minimize

categorical cross-entropy loss using the Adam optimizer with a learning rate of 0.001.

Baseline 1: logistic regression
This model served as a simple, interpretable baseline. It used only the one-hot encoded static features.

Upload Training Data (X_train_static)

No file selected.

Upload Labels (y_train)

No file selected.

Multi-Class Strategy Solver

One-vs-Rest (ovr) v liblinear v

Train Model

Training Log

Click “Train Model" to begin training...

Fig. 2. Logistic regression model trainer.
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Baseline 2: SVM (Vitals)
This model evaluated the predictive power of vital signs alone, using a nonlinear classifier.

Upload Vitals Features (X_train_vitals)
No file selected.

Upload Labels (y_trair)

No file selected.

Kernel Type Regularization Parameter (C)

REBF (non-linear) v 10 [

Train SVM Model

Training Log

Click *Train SVM Model” to begin training...

Fig. 3. Baseline 2: SVM (Vitals) model trainer.

Baseline 3: CNN (Cough Audio)
This unimodal deep learning model was designed to classify pneumonia risk from cough sounds.

Baseline 3: CNN (Cough Audio) Model Trainer

Upload Audio Spectrograms (X train_audio)

No file selected.

Upload Labels fy_train)

No file selected.
Valiciation AUtTo (X val_audio) Valldation Labels (y_val)

No file selected. [Browse _| No ile selectea.

Epochs

50

Train CNN Model

Training Progress

Training Log

Click "Train CNN Model” to begin training...

Fig. 4. Baseline 3: CNN (Cough Audio) model trainer.

Multimodal Framework
This hybrid model integrates all three data streams using the Keras Functional API, allowing for multiple

inputs and a sophisticated fusion mechanism.
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Multimodal Framework Trainer (Vitals + Audio + Static)

Vitals Input (X_train_vitals) Audio Spectrogram (X_train_audio} Static Features (¥_train_static)
No file selected. Mo file selected. No file selected.
Validation Vitals (X val_vitals) Validation Audio (X val_aucic) Validation Static (X val_static)
No file selected. No file selected. No file selected.
Validation Labels v val
No fle selected.
Labels (y_train) Epochs
No file selected. 50

Train Multimodal Model Dowmioad Training History

Training Progress

Training Log

Click “Train MuRimodal Model” to begin.

A

Training & Validation Trend

Fig. 5. Multimodal framework trainer (vitals+ audio+ static).

5.4| Evaluation Metrics

In each fold of the cross-validation, we calculated Accuracy, Sensitivity (recall for the positive class),
Specificity, Fl-score, and the Area Under the Curve for the high-risk class. Specificity was calculated as
TN/(TN + FP), and the final metrics reported in Table 1 are the average of the scores across all five folds,
providing a robust and general assessment of each model's performance.

6 | Results

The proposed multimodal framework was benchmarked against several baseline models: 1) Logistic
Regression using only demographic and static features, 2) a Support Vector Machine (SVM) with statistical
features (mean, standard deviation) extracted from physiological data, and 3) a standalone CNN for cough

classification.
Table 1. Comparative performance of different models.
Model (%) Accuracy (%)  Sensitivity (%) Specificity F1-Score AUC
Logistic regression | 68.2 55.1 74.5 0.61 0.65
SVM (vitals) 81.5 79.3 82.8 0.81 0.84
CNN (cough audio) 85.3 83.0 86.7 0.85 0.88
Multimodal framework  92.6 94.3 90.1 0.92 0.947

As shown in Table 1, our proposed multimodal framework significantly outperformed all baselines across
every metric, highlighting the synergistic value of fusing physiological and acoustic data.

To provide a qualitative understanding of the data that drives the model's performance, g 6 illustrates
sample physiological and acoustic data captured from a participant in our study who was later diagnosed with
pneumonia. The plot clearly shows the elevated RR and the distinct spectral pattern of the cough, which are
the types of features our multimodal model learns to identify.
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100 Comparative Performance of Different Models

Accuracy
Sensitivity
Specificity
F1-Score

|7 AUC

1 ™
80 3

i

60

201

Performance Metrics (%)

201

gression oM (vitals) nework

X udio)
Logistic Re ca (cough A putamodal Fr2

Fig. 6. Sample anonymized data from the study.

I. A 60-minute segment of physiological time series data from a 'High-Risk' participant, showing a petsistently
elevated RR (top) and HR (bottom).

II.  The corresponding log-mel spectrogram of a cough event from the same participant, showing strong energy
in the lower and mid-frequency bands, is characteristic of a productive cough. These patterns are
representative of the data observed in other participants within the 'High-Risk' cohort.

To further validate our multimodal hypothesis, we conducted an ablation study to quantify the contribution

of each data stream. The results, presented in Table 2, confirm that combining all modalities yields the best
performance.

Table 2. Ablation study results.

Model Configuration Accuracy (%) Sensitivity (%) AUC
Full model (vitals + cough + static)  92.6 94.3 0.947
Vitals + static (no cough) 88.1 89.2 0.912
Cough + static (no vitals) 86.5 84.7 0.891

The edge processing module established great efficiency, with an average signal processing latency of 150 ms

per minute data chunk on a standard smartphone Central Processing Unit, ratifying its suitability for real-time
operation.

1000 Ablation Study Results: Contribution of Each Data Modality

{- Accuracy (%)
BN Sensitivity (%)
97.5 | AUC (%) )

Performance Metrics (%)

Full Model Vitals + Static Cough + Static
(Vitals + Cough + Static) {No Cough} {No Vitals)

Fig. 7. Ablation study results for multimodal framework.

This figure illustrates the results of the ablation study performed to evaluate the individual contributions of

vitals, cough audio, and static demographic data in the proposed pneumonia detection model. The bar chart
compares three configurations:

1. Full Model (Vitals + Cough + Static).
II. Vitals + Static No Cough).
III. Cough + Static (No Vitals).
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Each configuration is evaluated using three performance metrics: accuracy, sensitivity, and AUC. The AUC
values have been scaled to a percentage for visual alignment.

Heart Rate by Patient Oxygen Saturation by Patient
; 100} - !
100 - : R
~ 80F
- 80[- g
£ c
a g
2 = 60r
g 60 5
2 &
& 40 g 40T
T 2
X
20 © 20t
0 1 1 1 0 L L 1
POO1 POO2 POD3 POOL POO2 POO3

Fig. 8. Illustrative wearable sensor data from three anonymized participants.

The left panel displays the average HR, and the right panel displays the average blood oxygen saturation (in
percentage). These examples highlight the interpatient variability captured by the system, such as the
elevated HR and lower oxygen saturation in participant PO02, which are potential indicators of respiratory
distress.

7| Privacy, Ethics, and Interpretability

Deploying an Al system for health monitoring necessitates a robust ethical and privacy framework.

1. Privacy and Security: Our architecture is designed with privacy by design principles. All data is
anonymized at the edge, encrypted both in transit. And at rest.

II.  Ethical Considerations: The system is explicitly positioned as a decision support tool, not a diagnostic
replacement. All alerts require confirmation by a qualified clinician. As with each of our IRB-approved
protocols, all participants underwent a detailed informed consent process. We acknowledge the potential

for algorithmic bias and are committed to ongoing model auditing across diverse demographic groups.

III.  Explainable Al to foster trust and clinical utility, we integrated SHAP (Shapley Additive exPlanations)
Lundberg and Lee [15] into our framework. For each high-risk prediction, the system generates a report
that highlights which features (15 percent rise in RR over 3 hours, spectrogram features consistent with a

wet cough) contributed most to the decision, providing transparent and actionable insights for clinicians.

8| Discussion

Our principal finding is that an edge-cloud framework integrating multimodal wearable data can detect
physiological signatures of early-stage pneumonia with high accuracy and sensitivity. The performance lift
observed in our full model over unimodal baselines Table 1) and ablation variants Table 2) strongly supports
the hypothesis that a synergistic fusion of continuous physiological monitoring and event-driven acoustic
analysis is superior to either approach in isolation. The high sensitivity (94.3 percent) is particularly crucial,
as it suggests the system can serve as an effective screening tool to prompt early clinical consultation,
potentially reducing disease severity and healthcare costs.

Our work advances the state of the art by moving beyond static, in-clinic data to a continuous, ambulatory
monitoring paradigm. Unlike Sharma et al. [4], which focused solely on cough, or Toruner et al. [16], which
monitored vitals for sepsis, our framework provides a more complete, pneumonia-specific picture. The hybrid
edge cloud architecture strikes a critical balance between low-latency local processing and the computational
power of the cloud, a design pattern essential for scalable real-world deployment.

Limitations: We acknowledge several limitations. In our study, while providing crucial real-world data from
52 participants, it was conducted in a specific regional and demographic context in Nigeria; its generalizability
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requires validation across more diverse populations. More so, the model's petformance on patients with
confounding respiratory conditions, such as COPD or asthma, requires more extensive validation, as only a
small subset of the cohort (n=7) had such comorbidities. In addition, practical deployment challenges were
observed. Long-term battery life and user adherence to wearing the chest strap sensor consistently over the
full 24-hour period were approximately 87%, highlighting the need for more comfortable and power-efficient
hardware in future iterations.

9| Conclusion

This paper presented a novel, end-to-end framework for the early detection of pneumonia using wearable
sensors and deep learning. Through fusing multimodal data within a hybrid edge-cloud design, our system
achieved high performance, demonstrating its potential to empower patients and clinicians with proactive,
continuous respiratory health perceptions.

Future work will proceed along several key tracks:
I. Large-scale clinical trials: multi-center validation of model efficacy.
II. Federated learning: training across distributed datasets for enhanced privacy.
III. Integration with EHR: seamless hospital system connectivity.

IV. Longitudinal disease modeling: predict treatment response and recovery trajectory.
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