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1|Introduction  

decision-making is essential in almost every aspect of human life, influencing personal, professional, industrial, 

and governmental decisions. The complexity of decision-making grows exponentially when multiple 

conflicting criteria must be considered. Traditional decision-making methods that rely on single-criterion 
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Abstract 

Multi-Attribute Decision Making (MADM) is a critical branch of decision science that provides structured methodologies 

for evaluating and selecting alternatives based on multiple conflicting criteria. In modern decision-making processes, 

stakeholders often encounter complex scenarios where trade-offs between criteria must be carefully analyzed. MADM 

techniques enable decision-makers to rank and prioritize alternatives while accounting for diverse objectives, uncertainties, 

and real-world constraints. This paper delves into the fundamental principles and theoretical foundations of MADM, 

highlighting its role in optimizing decision processes across various industries. The study explores widely adopted MADM 

techniques, including the Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution 

(TOPSIS), and VIKOR, which are essential for systematically structuring and solving decision-making problems. 

Furthermore, it examines advanced approaches such as Neutrosophic MADM, which integrates uncertainty and 

indeterminacy handling to improve decision reliability. The paper comprehensively analyzes real-world applications in 

domains such as engineering, business management, supply chain optimization, and financial decision-making. Additionally, 

numerical analysis, comparative evaluations, and structured decision matrices are included to illustrate the effectiveness of 

different MADM methodologies. Special attention is given to the impact of weighting methods, normalization techniques, 

and the role of expert judgment in decision-making. Finally, the study discusses existing challenges in MADM, including 

subjectivity in criteria weighting, computational complexities, and data inconsistencies. Future research directions are also 

outlined, emphasizing the integration of Artificial Intelligence (AI), Machine Learning (ML), and big data analytics with 

MADM to enhance decision-making accuracy, automation, and adaptability in dynamic environments. ML, and big data 

analytics with MADM to enhance decision-making accuracy, automation, and adaptability in dynamic environments. 

Keywords: Multi-Attribute decision making, AHP, TOPSIS, VIKOR, Neutrosophic MADM, Supply chain management. 
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  evaluation are often inadequate, necessitating the development of Multi-Attribute Decision-Making (MADM) 

techniques. MADM is a subfield of decision science that evaluates and selects alternatives based on multiple 

criteria. Unlike Single-Attribute Decision Making (SADM), MADM methods allow decision-makers to 

systematically compare options by assigning relative importance to each criterion. The necessity for MADM 

has grown significantly with the advancement of technology, globalization, and increased complexity in 

industries such as healthcare, business, engineering, and finance. Over time, various MADM methods have 

been developed, each with its unique approach to structuring and solving decision problems. Some methods 

use mathematical models to derive optimal rankings, while others rely on heuristic decision rules and 

subjective preferences. The effectiveness of a MADM method depends on the accuracy of the input data, the 

appropriateness of the weighting techniques, and the decision-maker's ability to analyze the results correctly. 

This paper provides an in-depth discussion of the core concepts of MADM, explores its methodologies, and 

highlights its applications in diverse industries. It also includes extensive numerical analysis, tables, and 

comparisons to illustrate the effectiveness of different MADM techniques. The paper concludes by discussing 

challenges faced in MADM and future research directions.  

Nafei et al. [1] emphasized the importance and necessity of Data Envelopment Analysis (DEA) as a relevant 

and effective tool for evaluating the performance of Decision-Making Units (DMUs), such as banks and 

financial institutions. DEA is crucial in assessing efficiency by comparing multiple units with similar inputs 

and outputs. However, one of the key challenges in DEA applications arises when dealing with random 

variable values, which introduce uncertainty and variability into the analysis. To address this issue, the authors 

propose a novel approach that extends traditional DEA models to incorporate random state variables. 

Drawing inspiration from existing interval input/output analysis methods, they develop a solution framework 

for handling uncertainty in DEA.  

Nancy and Garg [2] first introduced a score function for ranking neutrosophic numbers and proposed a 

decision-making method based on the optimized score function. By offering a distance formula for interval-

valued fuzzy numbers, Liu [3] developed an enhanced TOPSIS approach for MADM problems where 

parameters and weights of attributes are all represented by interval-valued fuzzy numbers. To cope with 

decision-making problems under indeterminacy, Nafei et al.[4] proposed a MAGDM method using Interval-

Valued Neutrosophic Numbers (IVNNs). Mohammadi et al. [5] suggested a fuzzy TOPSIS technique that 

relies on group suggestions to select suitable security protocols for e‐commerce operations. Wibowo [6]  

suggested a MAGDM method based on IVNNs to evaluate and choose hotel sites. Choi et al. [7] proposed 

an extension of multi-objective reinforcement learning to optimize production quality and yield in non-

digitalized manufacturing processes, demonstrating up to 87.02% accuracy in fibber elongation predictions 

and a 7.25% improvement in productivity.  

Upadhyay et al. [8] analyzed over 30 studies on AI-driven Digital Twin (DT) technologies in Industry 4.0, 

covering advances in robotics, smart manufacturing, and sustainability. They discussed the integration of AI 

in traditional and emerging methods and examined the development potential and challenges of AI-powered 

DTs. Lind et al. [9] proposed integrating multi-objective optimization with NSGA-II, PSO algorithms, and 

Digital Human Modeling (DHM) tools for manufacturing layout planning, enhancing productivity, worker 

well-being, and space efficiency. Xia et al. [10]  proposed an AI-driven approach for cyber-physical production 

systems (AI-CPPSs) to address the challenge of maintaining deterministic response amid increasing demands 

for flexibility and intelligence.  

Azizi et al. [11] presented an alternative approach for estimating the volatility parameter of Bitcoin, 

emphasizing the role of historical market data as a key determinant of price fluctuations. The methodology 

involves constructing a historical dataset for Bitcoin volatility, followed by a comparative analysis of 

fundamental and computed values of Bitcoin derivatives, particularly futures contracts. Azimi et al. [12]  

introduced an applied approach for solving Interval Neutrosophic Integer Programming (INIP) problems, 

leveraging Neutrosophic Sets to represent uncertainty in optimization models. The proposed method utilizes 

a ranking function to transform the INIP model into a crisp equivalent formulation, which can be solved 
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  using conventional optimization techniques. By adopting this approach, the model effectively accounts for 

uncertainty while preserving computational feasibility, making it applicable to various real-world decision-

making problems. Nafei and Nasseri [13] proposed that Linear Programming (LP) is one of the most widely 

used optimization techniques in operations research and applies to real-world decision-making problems. It 

consists of an objective function subject to one or multiple constraints, which may be expressed as equalities 

or inequalities. However, many practical optimization problems involve uncertainty, inconsistency, and 

imprecision, making it challenging to obtain an optimal solution using traditional LP methods. Nafei et al. 

[14] highlighted that MADM plays a fundamental role in modern decision theory, with widespread 

applications across various real-world problems.  

One of the key challenges in MADM is the pervasive issue of uncertainty, which has led to the development 

of several theoretical frameworks to handle imprecise and ambiguous information. The Fuzzy Set (FS) theory 

and its subsequent extensions have been widely used to address decision-making under uncertainty. 

Ghassempour et al. [15] presented a comprehensive analysis of data-driven decision-making in the Venture 

Capital (VC) market, emphasizing integrating technology, data science, and finance to enhance investment 

strategies. Given the complexities and uncertainties inherent in VC investments, the study first establishes a 

foundational understanding of VC, discussing its operational challenges, risk factors, and the sector's potential 

for innovation and growth.  

The rest of this section is described as follows: Section 2 presents the fundamental concepts of MADM, 

outlining its key steps, weighting techniques, and decision-making models. It also explores methods for 

handling uncertainty and discusses the advantages and limitations of MADM in decision-making processes. 

Section 3 provides an in-depth analysis of widely used MADM techniques, including the Analytic Hierarchy 

Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), VIKOR, and 

Neutrosophic MADM. Section 4 examines real-world applications of MADM across various industries, such 

as engineering, business, and supply chain management, highlighting its practical relevance in optimizing 

complex decision scenarios. Section 5 concludes the study by summarizing the key findings, identifying 

limitations, and suggesting future research directions, mainly focusing on integrating Artificial Intelligence 

(AI), Machine Learning (ML), and big data analytics into MADM frameworks to enhance decision-making 

accuracy and adaptability. 

2|Fundamental Concepts of MADM  

 MADM is a structured decision-making method designed to evaluate alternatives systematically when 

multiple, often conflicting, criteria influence the selection of an optimal alternative. The complexity of 

decision-making in real-world applications requires structured methodologies that ensure consistency, 

transparency, and reliability. MADM techniques allow decision-makers to compare, rank, and select 

competing alternatives using computational methods and analytical frameworks. 

2.1|Key Steps in MADM 

The MADM process follows several key steps to ensure a structured and rational approach to decision-

making: 

I. Problem definition and criteria selection: 

− The first step in MADM is clearly defining the decision problem. This includes specifying objectives, constraints, 

and potential alternatives. 

− The criteria must be comprehensive, measurable, and relevant to the decision problem. Examples include cost, 

efficiency, reliability, and sustainability. 

II. Criteria are often classified into two main types: 
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  − Benefit criteria: Higher values are preferred (e.g., quality, safety, customer satisfaction). 

− Cost criteria: Lower values are preferred (e.g., production cost, environmental impact, failure rate). 

III. Construction of the decision matrix: 

− A decision matrix is developed where alternatives are evaluated against multiple criteria. 

− Each row represents an alternative, and each column represents a criterion. 

− The decision matrix serves as the foundation for applying various MADM techniques. 

IV. Weight assignment to criteria: 

− Not all criteria are equally important; some factors have a more significant impact on decision-making. 

− Different techniques can be used to assign weights to criteria based on expert opinions, statistical analysis, or 

mathematical optimization. 

Normalization of data: Since the criteria can have different units of measurement (e.g., cost in dollars and 

efficiency in percentages), normalization is essential to bring all values into a comparable scale. Standard 

normalization techniques include min-max scaling, vector normalization, and Z-score transformation. 

Application of MADM methods: Various decision-making methods such as AHP, TOPSIS, or VIKOR are 

applied to process the decision matrix and compute rankings for the alternatives. 

Selection of the best alternative: 

After processing the data using MADM methods, the final ranking of alternatives is generated. Decision-

makers use these rankings to select the most suitable alternative that aligns with their objectives. 

2.2|Weighting Techniques in MADM 

Weighting methods play a crucial role in MADM as they help prioritize decision criteria based on their relative 

importance. The most widely used weighting techniques include: 

Equal weighting 

I. Assumes all criteria have equal importance. 

II. It is often used as a baseline approach but may not reflect real-world priorities accurately. 

Entropy method 

I. It uses the distribution of data within each criterion to determine weights objectively. 

II. Higher variability in data results in higher weights. 

Pairwise comparison (AHP-based methodology) 

I. Uses expert judgment to compare criteria in a structured manner. 

II. A hierarchical framework is created where criteria are compared against each other in pairs. 

III. A consistency check ensures logical coherence in weight assignments. 

Delphi method 

I. Involves multiple rounds of expert surveys to derive consensus-based weighting. 

II. Useful in complex decision-making scenarios where expert knowledge is critical. 

2.3|Decision-Making Models in MADM 

MADM problems can be broadly categorized into two decision-making models: 
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  Compensatory models 

I. Allow trade-offs between criteria. 

II. An alternative with a low score in one criterion can still rank highly if it performs well in other criteria. 

III. Examples include the Weighted Sum Model (WSM) and TOPSIS. 

Non-compensatory models 

I. Do not allow trade-offs between criteria. 

II. Poor performance in any criterion may lead to the elimination of an alternative. 

III. Examples include Elimination by Aspects (EBA) and Lexicographic Ordering. 

2.4|Handling Uncertainty in MADM 

Real-world decision-making often involves uncertainty due to incomplete or imprecise data. Several advanced 

MADM approaches have been developed to address uncertainty: 

Fuzzy MADM 

I. Uses fuzzy logic to model vagueness in decision criteria. 

II. Criteria weights and alternative evaluations are expressed using fuzzy numbers. 

Neutrosophic MADM 

I. Extends fuzzy logic by incorporating truth, indeterminacy, and falsity. 

II. Provides a more flexible approach to handling uncertainty in decision-making. 

Probabilistic MADM 

I. Assigns probabilities to different outcomes to account for uncertainty. 

II. Useful when dealing with stochastic decision problems. 

2.5|Advantages of MADM 

MADM provides several benefits that make it a widely adopted approach in decision-making: 

I. Systematic Evaluation: Ensures a structured approach to analyzing multiple alternatives. 

II. Transparency: Allows decision-makers to understand the reasoning behind each decision. 

III. Flexibility: Can be applied to various decision problems across multiple industries. 

IV. Improved Decision Accuracy: Incorporates qualitative and quantitative data to enhance decision reliability. 

2.6|Limitations of MADM 

Despite its advantages, MADM also has some limitations: 

I. Subjectivity in Weighting: The assignment of weights is often based on expert opinions, which may introduce 

bias. 

II. Computational Complexity: Some MADM methods require extensive calculations, making them challenging 

for large datasets. 

III. Handling Large Numbers of Criteria: As the number of criteria increases, the complexity of pairwise 

comparisons and computations also increases. 

By leveraging structured techniques, MADM ensures informed and rational decision-making. The following 

section explores specific MADM methodologies in greater detail. 
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  3|Popular MADM Methods 

3.1|Analytic Hierarchy Process  

AHP structures decision problems into a hierarchical framework. It involves pairwise comparisons of criteria 

to derive relative importance. This method is particularly effective in cases where subjective judgment plays 

a key role. 

The core steps of AHP include: 

I. Structuring the decision problem into a goals, criteria, and alternatives hierarchy. 

II. Conducting pairwise comparisons to determine relative weights. 

III. Computing a consistency ratio to ensure logical consistency. 

IV. Aggregating scores to determine the most suitable alternative. 

Example 1. Consider a decision problem involving the selection of a supplier. Assume four criteria: cost 

(C1), quality (C2), reliability (C3), and sustainability (C4). The pairwise comparison matrix (normalized) and 

resulting weight assignments are as follows: 

C1: 0.40, C2: 0.30, C3: 0.20, C4: 0.10. 

After aggregating scores for three supplier alternatives (S1, S2, S3), the rankings are as follows: 

S1: 0.75. 

S2: 0.68. 

S3: 0.61. 

Thus, Supplier S1 is chosen as the best alternative. 

3.2|Technique for Order Preference by Similarity to Ideal Solution  

TOPSIS evaluates alternatives based on their relative distances from an ideal and a negative-ideal solution. 

This method is widely used due to its straightforward ranking mechanism. 

The process involves 

I. Normalizing the decision matrix to eliminate scale differences. 

II. Weighting the normalized criteria. 

III. Computing the Euclidean distances from ideal and negative-ideal solutions. 

IV. Calculating the relative closeness coefficient for ranking alternatives. 

Example 2. For the same supplier selection problem, the distance from the ideal and negative-ideal solutions 

is calculated as follows: 

S1: Distance to Ideal (0.45), distance to negative-ideal (0.25), closeness (0.64). 

S2: Distance to Ideal (0.50), Distance to Negative-Ideal (0.28), Closeness (0.62). 

S3: Distance to Ideal (0.55), Distance to Negative-Ideal (0.32), Closeness (0.59). 

Thus, Supplier S1 is the optimal choice using TOPSIS. 

3.3|VIKOR Method 

VIKOR prioritizes alternatives by calculating a ranking index based on regret and satisfaction. This technique 

provides a compromise solution for decision-makers who must make trade-offs between different criteria. 



 A systematic review of multi-attribute decision making… 

 

54

 

  Using the same dataset, the calculated VIKOR scores are: 

S1: 0.31. 

S2: 0.37. 

S3: 0.41. 

Supplier S1 is the best choice under the VIKOR method. 

3.4|Neutrosophic MADM Approaches 

Neutrosophic sets extend classical FSs to handle uncertainty, imprecision, and indeterminacy in decision-

making. These methods are effective when dealing with incomplete or inconsistent information. 

Using a Neutrosophic MADM model, we obtain: 

S1: Truth Value (0.75), Indeterminacy (0.15), Falsity (0.10). 

S2: Truth Value (0.70), Indeterminacy (0.18), Falsity (0.12). 

S3: Truth Value (0.65), Indeterminacy (0.20), Falsity (0.15). 

S1 is still the optimal choice, showcasing the robustness of Neutrosophic MADM models in handling 

uncertainty. 

4|Applications of MADM  

MADM is applied across various industries, including engineering, business, and supply chain management. 

4.1|Engineering 

MADM methods help optimize material selection, manufacturing processes, and product quality control. In 

material selection problems, MADM methods evaluate trade-offs between properties such as strength, 

durability, and cost. 

   Table 1.Application of MADM in material selection. 

 

 

 

4.2|Business and Management 

MADM is widely used in financial decision-making, investment evaluations, and strategic planning. Its ability 

to evaluate alternatives based on multiple factors makes it indispensable in business analytics. 

For instance, a financial investment decision evaluated using MADM gives the following ranking: 

I. Investment A: Return (8%), Risk (5%), Market Potential (80%), Liquidity (75%). 

II. Investment B: Return (7%), Risk (4%), Market Potential (85%), Liquidity (70%). 

III. Investment C: Return (9%), Risk (6%), Market Potential (78%), Liquidity (80%). 

IV. After applying MADM methods, Investment B emerges as the best option. 

4.3|Supply Chain Management 

Supplier evaluation and selection are critical applications of MADM. AHP, TOPSIS, and VIKOR are 

commonly used to rank suppliers based on cost, quality, delivery reliability, and sustainability. 

Material Strength Durability Cost Sustainability 

M1 85 80 70 90 
M2 78 85 75 80 
M3 80 78 72 85 
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  Table 2. Supplier selection using MADM. 

 

 

 

After applying MADM analysis, Supplier S1 is selected as the optimal choice. 

5|Conclusion 

This paper comprehensively analyzed Multi-Attribute Decision Making (MADM) and its role in structured 

decision analysis across various industries. By examining key MADM techniques such as the Analytical 

Hierarchy Process (AHP), the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), 

VIKOR, and Neutrosophic MADM, the study demonstrated their effectiveness in ranking and selecting 

optimal alternatives in complex decision-making scenarios. The discussion covered fundamental concepts, 

weighting techniques, decision models, and uncertainty-handling approaches, offering a systematic 

perspective on MADM methodologies.The findings indicate that MADM is a powerful and adaptable tool 

for decision-makers, providing transparency, consistency, and reliability in complex environments such as 

engineering, business management, supply chain optimization, and financial decision-making. Moreover, the 

integration of uncertainty-handling techniques, particularly Neutrosophic MADM, extends the applicability 

of traditional MADM methods to scenarios where decision criteria involve indeterminacy and incomplete 

information. Despite its numerous advantages, MADM presents several limitations. The reliance on expert 

judgment for assigning weights introduces subjective bias, which can influence the final rankings. Some 

MADM techniques, particularly pairwise comparison-based methods such as AHP, become computationally 

expensive as the number of criteria and alternatives increases, making them less practical for large-scale 

applications. Additionally, MADM models often struggle with inconsistencies in data, especially when dealing 

with incomplete or contradictory information, which can reduce decision reliability.  

The choice of normalization and weighting techniques also significantly impacts the final ranking, meaning 

that different methods may lead to varying results. Future research should focus on integrating MADM with 

AI, ML, and big data analytics to enhance automation, adaptability, and real-time decision-making. 

Developing hybrid models that combine traditional MADM techniques with deep learning algorithms could 

improve predictive capabilities and eliminate subjectivity in weight assignment. Exploring new approaches 

for handling uncertainty, mainly through advanced neutrosophic and probabilistic models, could further 

strengthen MADM's applicability to real-world scenarios. With the increasing complexity of decision-making 

problems, the evolution of MADM methods toward intelligent, data-driven frameworks will be crucial in 

optimizing decisions across various domains. 
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S1 70 85 90 80 
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